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INTRODUCTION 

Niobium(IV) halides are diamagnetic solids (1-4) with 

structures consisting of chains of MX2X^/2 octahedra having 

direct metal-metal bonds between alternate pairs of niobium 

atoms (2,3). They will react with various bases to form 

(a) paramagnetic species in which the metal-metal bonds are 

cleaved and (b) diamagnetic species in which these bonds are 

retained. Their reactions with nitrogen donor ligands or 

halide ions have been the most extensively studied, while 

reactions with other ligands have been largely neglected. 

Fairbrother and coworkers (5-7) as well as Keenan and 

Fowles (8) have recently shown that niobium pentahalides 

(class "a" acids) will react with alkyl sulfides (class "b" 

bases) to form more stable complexes than are obtained with 

the class "a" oxygen analogues. This result contrasts with 

the predictions of Ahrland, Chatt and Davies (9) as well as 

Pearson (10), but is consistent with the observation of 

Jorgensen (11) that class "b" metals includes three disparate 

categories one of which is metals in high oxidation states. 

The possibility exists that a metal in a high or a low oxida­

tion state will exhibit class "b" character, while in inter­

mediate states class "a" character will be found. 
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In the present study the reactions of niobium(IV) halides 

with selected sulfur donor ligands are investigated. The 

possible importance of steric effects determined the choice 

of dimethyl- and diethylsulfide, tetrahydrothiophene, and 

1,2-dithiamethylethane as potential ligands. Ligand-ligand 

repulsions become increasingly important in the order 1,2-

dithiamethylethane < tetrahydrothiophene < dimethylsulfide < 

diethylsulfide. Halogen-ligand and halogen-halogen repulsions 

increase in the order chloride < bromide < iodide. Conceiv­

ably the stereochemical consequence of sterically hindered 

ligands could be stabilization of a paramagnetic trans-NbX^L^ 

species. To date only the cis isomers have been reported. 

Review of Previous Work 

This section shall consist of (1) a discussion of known 

complexes containing niobium(IV) and (2) a consideration of 

some alkylsulfide complexes formed by group IV and V transi­

tion elements. Bruce A. Torp (12) and F. Fairbrother (13) 

have recently reviewed the chemistry of niobium(IV) and a 

recent publication by Livingstone (14) considers metal com­

plexes formed by sulfur donor ligands. In this review there­

fore only those aspects are discussed which are relevant to 

later discussions of results. 
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Complexes containing niobixjm(IV) 

Direct reaction of niobium(IV) halides with alkali metal 

halides yields M2NbX5. Safonov and Khorschunov (15-17) 

studied the binary systems NbCl^-MCl (M = Na, K, Rb and Cs) 

using the techniques of thermal analysis and found evidence 

for the congruently melting compounds M2NbCl^. Morozov and 

Lipatova (18) recently prepared the ammonium, rubidium, and 

cesium hexachloroniobate(IV) by mixing together concentrated 

hydrochloric acid solutions containing niobium tetrachloride 

and the salt MCI (M = Rb"^, and Cs"^) . Analytical data 

and x-ray powder diffraction data for the compounds were 

reported. 

Torp (12) describes the synthesis, structure, spectra 

and magnetic properties of the series M^NhX^ (M = K"^ and Rb"^; 

X = Cl~ and Br") and Cs2Nbl5. With the exception of Rb2NbBr6 

the compounds were face-centered cubic. A detailed structure 

determination revealed that K2NbCl5 and K2PtClg were iso-

morphous. Diffuse reflectance spectra and the spectrum of 

NbCl^Z- in fused pyridinium chloride were discussed in terms 

of molecular orbital theory. Spectra in the visible region 

for M2NbCl6, NbClg^', and M2NbBr6 each exhibited two bands at 

23,5 and 18.7 kK, 24.4 and 18.2 kK, and 18.9 and 14.0 kK, 
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respectively. Average 10 Dq values were 21.1 and 16.4 kK for 

the chloride and bromide. The molar magnetic susceptibilities 

exhibited Curie-Weiss behavior. Effective magnetic moments 

calculated from the data ranged from a low of 1.13 B.M. for 

Cs2Nbl5 to 1.40 B.M. for Rb2NbClg at room temperature. 

Cozzi and Vivarelli (19) studied the visible spectra of 

concentrated hydrochloric acid solutions of NbCl^, but no 

discrete complexes were isolated. A red-orange niobium(IV) 

complex in 13N. HCl exhibited a band at 20.8 kK. 

Fedotov, Garif'yanov, and Kozyrev (20) obtained epr spec­

tra from ethanolic solutions of hydrogen chloride and niobium 

pentachloride reduced by zinc, but no species was isolated 

from the solutions. Similarly, Lardon and Gunthard (21) 

studied the epr spectrum of a niobium(IV) complex in alcoholic 

solution. At 77°K the spectrum exhibited a resonance having 

axial symmetry. The components of the g and A tensors of the 

spin-Hamiltonian were evaluated from the spectrum: g]^ = 

1.892, g3 = 1.925 and g(ave) = 1.903; A^ = 247.6, A3 = 519.7, 

and A(ave) = 357.8 gauss. In the absence of knowledge con­

cerning the nature of the species in solution no further 

discussion of the bonding was presented. 

Wentworth and Brubaker (22,23) prepared a new class of 
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chlorocomplexes by electrolytically reducing niobium penta-

chloride in anhydrous alcoholic hydrogen chloride. Addition 

of an alcoholic solution of an amine hydrochloride precipi­

tated the salts (BH)2Nb(OR)Cl5 (R = CH3, CH3CH2, and (CH3)2CH) 

from such solutions. The molar magnetic susceptibilities of 

(pyH)2 Nb(OCH3)Cl5, (QnH)2Nb(OCH2CH3)Cl5, and (QnH)2Nb(0CH 

(0113)2)015 (QnH = quinolinium and pyH = pyridinium) exhibited 

Curie-Weiss dependence upon reciprocal temperature. Effective 

magnetic moments were virtually spin-only (1.73 B.M.) for one 

unpaired electron per niobium atom. Diffuse reflectance 

spectra exhibited a single band having a maximum at 19.6 kK. 

Rasmussen, Kuska, and Brubaker (24) obtained epr spectra 

of glasses containing Nb(C)CH3)Cl5 . From the spectra it was 

found that g^ = 1.965, g^ = 1.809, A = 248 gauss and B = 

144 gauss. A molecular orbital treatment was consistent with 

covalent chlorine-niobium sigma bonds and appreciable n-bond­

ing by the chlorine atoms. 

Wentworth and Brubaker (25) found that treatment of the 

above reduced alcoholic solutions with pyridine produced a 

diamagnetic species NbCl(OCH2CH3)3py. Molecular weight 

determinations in chloroform established that this was a 

dimer. The visible spectrum of a chloroform or ethanol solu­
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tion exhibited a single band at ça. 27.4 kK. When this dimer 

was treated with sodium ethoxide (in ethanol) the diamagnetic 

polymer Nb(0Et)4 formed. Direct metal-metal bonds were pro­

posed to account for the observed magnetic behavior of 

Nb2(OEt)6Cl2py2 and Nb(0Et)4. 

Djordjevic and Katovic (26) report the isolation of para­

magnetic Nb2Cl5 (0CH2CH3)3 (bipy)2" ("bipy = 2,2 '-bipyridine) from 

an ethanol solution containing NbCl^ and bipyridine. The 

magnetic moment at 20° was 1.39 B.M. Properties of the com­

pound suggested its formulation as an ionic derivative con­

taining the ions (Nb(OCH2CH3)2(bipy)2)^^ and (NbCl5 (OCH2CH3))^. 

Niobium(IV) halide complexes with nitrogen donor ligands 

can be obtained by either (1) direct reaction of the tetra-

halide and the ligand, or (2) reaction of excess ligand with 

niobium pentahalide, 

McCarley and coworkers (27) isolated NbX4(py)2 (X = CI 

and Br; py ~ pyridine) from reactions of NbX^ and excess 

pyridine. McCarley and Torp (1) obtained the same species 

as well as Nbl4(py)2 from reactions of NbX^ with pyridine at 

room temperature. Visible spectra of pyridine solutions 

exhibited bands with maxima at 20.6 kK for the chloride and 

20.7 and 13.9 kK for the bromide. Because the extinction 
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coefficients were larger than expected for bands due to "d-d" 

transitions, the bands were attributed to either pyridine-to-

metal or metal-to-pyridine charge transfer. M. Albutt and 

coworkers (28) also report the synthesis of NbX4(py)2 (X = CI 

and Br) using method (2). The visible spectra were similar 

to those obtained by Torp and McCarley. Effective magnetic 

moments at room temperature were respectively, 1.53 and 1.36 

B.M. for the chloride and bromide. These were higher than 

the corresponding moments of 1.37 and 1.26 B.M. reported by 

Torp and McCarley. The latter authors studied the suscepti­

bility as a function of temperature, Curie behavior was 

encountered and derived values of the TIP ( temperature inde­

pendent paramagnetism) constituted a significant contribution 

to the paramagnetic susceptibility at room temperature. 

Albutt and coworkers (28) also report the synthesis of 

NbX4(Y-pic)2, NbX4(bipy), and NbX4(0-phen) (X = CI and Br; 

Y-pic = v-picoline and 0-phen = 1,10-phenanthroline). The 

room temperature effective magnetic moments were lower than 

spin-only. Solid state and solution spectra of NbCl^fbipy) 

exhibited band maxima at 19.0 kK (solid) and 17.5 and 22.5 kK 

(in acetonitrile). Extinction coefficients for the doublet 

of 50 and 180 M'^cm"^ were not unreasonable for "d-d" bands. 
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but in dilute acetonitrile molar conductance values were 

obtained which suggested that the complex was behaving as a 

weak electrolyte according to (1). 

NbCl4(bipy)+ CH3CN ^ (NbCl3 (NCCH3)bipy)^+ +CI" (1) 

Cognizance of this complication precluded definite assignment 

of the spectral bands. 

With the bidentate arsenic donor ligand 0-phenylenebis-

dimethylarsine (diars) Clark and coworker (29) obtained the 

eight coordinate complexes NbX4(diars)2 from reactions of 

niobium pentahalide, niobium tetrahalide, or niobium oxytri-

halide. The chloride and bromide were isomorphous with the 

known eight coordinate dodecahedral complexes MX4(diars) 

(M = Ti, Zr, Hf or V; X = CI and M = Ti, Zr, or Hf; X = Br) 

(30). Comparison of the diffuse reflectance spectra suggested 

the presence of a similar ligand field in Nbl4(diars)2 as in 

the chloride and bromide analogues. Results from magnetic 

susceptibility investigations were complicated by decomposi­

tion of the sample during packing into a Gouy tube. Efforts 

to correct for the effect resulted in magnetic moments of 1.7, 

1.9, and 1.6 B.M. for the respective chloro, bromo, and iodo 

complexes. 

Torp (12) isolated the complexes NbX4(ac)2 (X = CI, Br, 
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halides with acetonitrile at room temperature. Dipole moment 

studies of benzene solutions suggested a cis-arrangement of 

the ligands in the chlorocomplex. Solid state and solution 

(ac) spectra were consistent with the same ligand environment 

for niobium(IV) in each phase. Two bands in each spectrum 

were assigned as "d-d" bands due to transitions from an essen­

tially nonbonding d^y orbital into anti-bonding d^2 and dx2-y2 

orbitals. These anti-bonding orbitals arise via splitting of 

an excited eg level by the low symmetry ligand field. This 

splitting decreased in the order CI > Br > I. Derived values 

of 10 Dq (here properly referred to in molecular orbital terms 

as &%) place acetonitrile above chloride ion in the spectro-

chemical series for niobium(IV). The true magnetic moment of 

the chloro complex was 1.75 B.M., and effective magnetic 

moments for the bromide and iodide were 1.75 and 1.45 B.M. 

at 300°. 

Dougherty (31) only recently reported the results of far 

infrared studies of NbX4(ac)2 (X = CI and Br) as well as a 

structure determination of NbBr4(ac)2 using the techniques 

of single crystal x-ray diffraction analysis. The far infra­

red spectra exhibited two or more bands in the niobium-halogen 
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stretching regions where only one band should be observed for 

a trans adduct. A cis arrangement of the ligands was proposed 

and this was confirmed for NbBr^(ac)2 by the structure analy­

sis (31). 

Brown and Newton (32) isolated the species NbX^B (X = CI, 

Br, and I; B = N, N', N", N'* *-tetramethylethylenediamine) 

from direct reactions of the amine and the tetrahalides. No 

magnetic susceptibility data were obtained. Diffuse reflec­

tance and solution spectra were similar with band maxima occur­

ring at 19.8 and 23.3 kK, 17.9 and 22.0 kK, and 17.7 and 18.2 

kK for the chloro, bromo, and iodo complexes, respectively. 

On the basis of extinction coefficients (<100) these were 

O 
assigned as transitions from a singlet ground state to a Eg 

state which has been split by low symmetry ligand field com­

ponents , The triethylamine complexes approaching the composi­

tion NbX4(N(CH2CH3)g) (X = CI, Br, and I) were obtained. The 

chlorocomplex NbCl^-O.g N(CH2CH3)3 was diamagnetic and its 

diffuse reflectance spectrum contained a single band at 26.3 

kK. A polymeric species containing direct metal-metal bonds 

was proposed. 

Bradley and Thomas (33) obtained Nb(NR2)^ (R = CHg, 

CH3CH2, CH3(CH2)2» and CH3(CH2)3) from the direct reaction 
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of LiNR2 and NbCl^. The valence state of niobium in the com­

pounds was established by treatment of their H2S04-ethanol 

solutions with excess FeClg followed by titration of the FeCl2 

formed with standard eerie sulfate solution. 

Rasmussen and Broch (34) report the synthesis of 

Nb(S2CNR2)4 (R = alkyl group). On the basis of unpublished 

data eight coordination of niobium (IV) was proposed. 

Thioether complexes of group IV and V transition elements 

Titanium and vanadium complexes Baker and Fowles (35) 

showed that TiX^ (X = CI and Br) will react with sulfur donor 

ligands to form TiX4L2 (L = 8(0113)2, S(CH2CH3)2, SC^Hg, and 

SC5H10)• With di-n-propylsulfide a 2:1 (ligand: TiX^) 

complex is obtained with chloride, but only a 1:1 adduct is 

isolated for the bromide. Molecular weight determinations 

established the complexes as mononuclear TiX4L2 species, but 

for TiBr4(S(CH2CH3)2)2 these studies suggest that dissocia­

tion was occurring via (2). 

TiBr^Lg - TiBr4L + L (2) 

The lower stability of the bromo bis adducts was attributed 

to the larger steric requirements of the bromine atoms. With 

less sterically hindered ligands such as tetrahydrothiophene 

(SC4H8) stable bromo bis adducts could be isolated. On the 
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basis of their far infrared spectra the complexes were assign­

ed as cis isomers. A report by Westland and Westland (36) 

confirms in part, the results of this study. 

Clark and coworkers (37) tried unsuccessfully to synthe­

size eight coordinate complexes analogous to TiCl4(diars)2 but 

using bidentate sulfur donor ligands. In each case only com­

plexes TiCl^B (B = 1,2-dithiamethylethane, 1,2-dithiaphenyl-

ethane, 1,2-dithiaethylethane, and cis-dithiamethylmaleo-

nitrile) were obtained. Attempts to introduce an additional 

molecule of B were without avail. Coordination via sulfur of 

the one ligand was established from the spectral region 1400-

600 cm"l. The ligand 1,2-dithiamethylethane (sometimes re­

ferred to as 2,5-dithiahexane (dth)) exists in various con­

formations (cis, trans, or gauche). The infrared spectrum 

has been studied by several workers (38-40) and most of the _ 

bands have been assigned. In the free ligand the trans con-

former predominates (30), while in the metal complexes only 

bands due to the gauche conformer are observed (37,38). A 

recent report by Cotton and coworkers (41) described a 

rhenium-dth complex which gives an infrared spectrum showing 

bands due to the trans conformer. In this case the ligand is 

thought to bridge different rhenium atoms. 
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Kharlamova and Gur'yanova (42) also prepared a.series of 

TiCl^-alkylsulfide complexes. Here complex formation was 

established cryoscopically and by dielectrometric titrations. 

For the monodentate ligands R2S (R = CH3CH2, €113(0112)3, and 

CH^C^H^) and tetrahydrothiophene evidence for 1:1 and 2:1 

complexes was found. The 1:1 complex TiCl^(SC^Hg) was iso­

lated as yellow crystals which melted at 116-120°C. The 

complex TiCl4(SC4Hg)2 was isolated as an orange solid. Evi­

dence was presented which suggested that species TiCl4(R2S)2 

are unstable with respect to TiCl4(R2S) in the presence of 

excess TiCl^. 

Fowles, Lester, and Walton (43) found that titanium 

trihalides form stable solid complexes. TiX3L2 (X = CI, Br, 

and I; L = 8(0113)2 SC^Hg). The presence of coordinated 

dimethylsulfide was established by comparing infrared spectra 

of the complexes with those of dimethylsulfide (44). The 

carbon-sulfur stretching bands were shifted by ca. 20 cm"^ to 

lower energy in the complexes relative to the free ligand. 

From electronic spectra of solids and solutions ligand field 

bands were identified at 12.0 and 15.3 kK for TiCl3(SC4Hg)2, 

12.1 and 15.6 kK for TiCl3 (8(^3)2)2» 11.9 and 13.8 kK for 

TiBr3(SC4Hg)2, 11.8 and 14.3 kK for TiBr3(8(^3)2)2, and 10.8 
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12.6 kK for Til3(SC4Hg)2. Charge transfer bands were identi­

fied in the spectra and appeared at lower energies than in 

the five coordinate complexes TiX3 (N(0113)3) 2 but in the same 

region as they occur in the spectra of TiClg^" and TiBrg^-. 

Five coordination was thus eliminated for the bromide and 

chloride complexes. However, using the position of the high­

est metal-halogen stretching band as an index to coordination 

number (45), far infrared (500-200 cm""^) spectra of nujol 

mulls were consistent with either a five-coordinate complex 

or a halogen bridged dimer. In tetrahydrothiophene the 

highest titanium-chlorine stretching occurred at 373 cm~^ 

while in nujol a band appeared at 390 cm~^. Six coordination 

was indicated for solutions in the free ligand. The solid 

state and solution far infrared spectra of the bromide com­

plexes were the same. While unambiuous stereochemical assign­

ments could not be made, this result suggested six coordina­

tion of Ti(III) in both phases. Similar conclusions were 

applicable to Til3(S (0113)2)2- Magnetic susceptibility deter­

minations of TiX3(R2S)2 over the temperature range 47° to 

-193° established that the chloride complexes were antiferro-

magnetic. This argues against five coordination of Ti(III) 

in these complexes in the solid state. The bromide and iodide 
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exhibited little, if any, antiferromagnetic behavior. 

Duckworth, Fowles, and Green (46) studied the reaction 

of vanadium tetrachloride with dimethyl- and diethylsulfide 

and found that reduction to VCI3 occurred. The species VCI3 

(R2S)2 were subsequently isolated as solid products. Direct 

reaction of VCI3 with dimethyl sulfide produced an identical 

product. Ethanethiol also reduced VCI4, but the reddish-

purple solid which formed was not fully characterized. Far 

infrared spectra of VCl3(R2S)2 in benzene and as nujol mulls 

were distinctly different exhibiting maxima at 422 cm"^ in 

the former, and 420, 373, and 342 cm~^ in the latter. Five 

coordination was proposed for the solution species. Metal-

sulfur stretching bands exhibited maxima at 262 and 259 cm ^ 

in solution and nujol mull spectra. Visible and near infra­

red spectra of solutions of the complexes in different sol­

vents were reported. In non-donor solvents such as benzene 

or iso-octane two bands appeared in the near infrared at 5:0 

and 7.0 kK. In spectra of solutions with donor solvents such 

as the free ligand these near infrared bands were absent. In 

these donor solvents six coordinate complexes formed. A 

detailed discussion of the spectra of the five-coordinate, 

d^ complexes has recently been reported (47). 
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Vanadium tetrachloride was not reduced by bidentate 

sulfur donor ligands (37). Species VCI4B (B = dth or cis-

dimethylthiomaleonitrile) were isolated. Effective magnetic 

moments at room temperature ranged from 1.68 to 1.73 B.M. Far 

infrared spectra exhibited vanadium-chlorine stretching bands 

in the region expected for six coordinate vanadium(IV). 

Diffuse reflectance spectra showed broad asymmetric bands at 

17.0-20.0 kK which were tentatively assigned as "d-d" bands. 

The average ligand field strength for sulfur donors was ca. 

18.0 kK compared to ça. 17.8 kK for VCl^^". The following 

spectrochemical series was proposed for vanadium(IV) com­

plexes: bipy > 0-phen > (CH30CH2-)2> (RSCH2-)2 > CI . 

Zirconium and hafnium Beattie and Webster (48) report 

infrared spectra of ZrCl4(S(CH3)2)2 and find metal-chlorine 

stretching bands at 372 and 299 cm"^. No details of the syn­

thesis are reported. There have been no other reported 

examples of complex formation between zirconium or hafnium 

tetrahalides or trihalides with sulfur donors. 

Niobium and tantalum Fairbrother and coworkers (5-7) 

report that thioethers form more stable adducts with MX5 (M = 

Nb or Ta; X = Cl or Br) than do their oxygen analogues. The 

series MX5R2S (R = CH3 and CH3CH2) was isolated. Tantalum 
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pentachloride also formed the 1:2 adduct TaCl5 (8(^3)2) 2* 

With tetrahydrothiophene the compounds NbX5(SC4H8)2 (X = CI 

and Br) and TaX5(SC4H8)2 (X = CI, Br, and I) were isolated. 

These are presumably seven coordinate complexes. 

Keenan and Fowles (8) found that NbX5(SC4Hg) could be 

obtained if the reaction of NbCl^ and tetrahydrothiophene was 

carried out in benzene. 

Safonov and coworkers (17) report the only evidence for 

complex formation by Nb(III). A phase corresponding to nio­

bium trichloride was allowed to interact with alkali chlorides 

in melts. Time-temperature curves indicated that compounds 

formulated as N2NbClg were produced. The compound Rb2NbCl5 

melts incongruently at 753° and Cs2NbCl5 melts congruently at 

762°. The formation of the compounds (or at least new 

phases) was confirmed by x-ray phase analysis. Fleming, 

Mueller, and McCarley (49) isolate K^NbgCl^g and K2NbCl5 

from the high temperature reaction of KCl and NbgClg. 
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EXPERIMENTAL 

Extreme sensitivity to oxygen and moisture was character­

istic of all the compounds synthesized during this study. It 

was therefore essential that all manipulations of these com­

pounds be effected in an inert atmosphere box or under a high 

vacuum. 

Materials 

Niobium 

Niobium beads of high purity and low tantalum content 

were purchased from the Pigments Division of E. I. Dupont 

Company. 

Zirconium 

Zirconium in block form was obtained from Laboratory 

stock. It was machined into turnings for use in the synthesis 

of zirconium(IV) chloride. 

Chlorine 

Chlorine in lecture bottles was purchased from the Mathe-

son Company. It was vacuum distilled into the reaction vessel 

at -78° and extensively outgassed at ca. 10~^ Torr before 

sealing off the vessel. 

Bromine 

Bromine was obtained from the J. T. Baker Chemical 
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Company and was dried over outgassed phosphorous(V) oxide and 

vacuum distilled into flasks for storage. 

Iodine 

Resublimed iodine crystals from the General Chemical Divi­

sion, Allied Chemical were extensively outgassed in the reac­

tion vessel at 10"^ Torr prior to sealing off the vessel. 

Organic reagents 

Dimethylsulfide purchased from Matheson, Coleman, and 

Bell was dried by stirring it at room temperature over porous 

lithium aluminum hydride followed by extensive outgassing of 

this mixture at ca. 10"^ Torr. The dimethylsulfide was subse­

quently vacuum distilled onto niobium(V) chloride in a clean 

dry 500 cc. flask for storage. 

Diethylsulfide was obtained from Columbia Chemicals. It 

was dried over LiAlH^ and stored over this solid until re­

quired. 

Tetrahydrothiophene was dried using the technique applied 

to diethylsulfide. It was obtained from Matheson, Coleman, 

and Bell. 

The compound 1,2-dimethylthioethane, more commonly refer­

red to as 2,5-dithiahexane, was purchased from Columbia Chemi­

cals . It was dried over LiAlH^ and extensively outgassed at 
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IQ-S Torr. Solids were removed from this mixture by filtra­

tion in the inert atmosphere box. The filtrate was stored in 

the inert atmosphere box in capped bottles. 

Benzene was obtained as a spectro-quality chemical from 

Eastman Chemicals. It was dried by refluxing it over sodium 

beads for ca. 12 hours followed by extensive outgassing in 

vacuo and distillation onto dry niobium(V) chloride for storage. 

Analytical Procedures 

Niobium 

Niobium in solids was determined gravimetrically as nio­

bium (V) oxide. Samples were prepared by hydrolysis with 

ammonia solutions. These mixtures were heated to boiling to 

hasten the hydrolysis and after cooling to room temperature 

and acidification with concentrated nitric acid a white pre­

cipitate of hydrous niobium(V) oxide formed. This was col­

lected by gravity filtration on ashless medium porosity filter 

paper, washed successively with three portions of dilute nitric 

acid, and ignited to anhydrous niobium(V) oxide in tared 

porcelain crucibles at 600-700°. 

Niobium in dilute solutions was determined spectrophoto-

metrically (50) by the Ames Laboratory Analytical Service 

Group, Iowa State University of Science and Technology, Ames, 
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Iowa. Solutions were prepared by hydrolysis of solid samples 

with ammonia followed by exhaustive digestion with concen­

trated sulfuric acid. The sulfuric acid solutions were 

diluted to volume with more acid and submitted for analysis. 

Halogens 

These were determined by potentiometric titration with 

standard silver nitrate solutions. A Beckmann Expanded Scale 

pH Meter in conjunction with a silver indicating and saturated 

calomel reference electrode was used. 

Zirconium was determined gravimetrically as zirconium(IV) 

oxide. Solid samples were dissolved in 25 cc. of 20% (by 

volume) hydrogen chloride solution. These solutions were 

diluted in turn with 50 cc. of 16% (by weight) aqueous mandelic 

acid and distilled water to a volume of 100 cc. After heating 

this mixture at 85° for 20 minutes it was filtered and the 

white hydrous precipitate was washed with a solution of hot 

2% HCl-15% mandelic acid solution. The residue was ignited to 

Zr02 at 900°. ~ 

Carbon and hydrogen 

Carbon and hydrogen determinations were made by Mr. J. J. 

Richards of the Ames Laboratory Analytical Service Group, Iowa 

State University of Science and Technology, Ames, Iowa. 
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Physical Measurements 

Magnetic susceptibility 

Magnetic susceptibility measurements were made from -196° 

to room temperature using a Faraday Balance. The balance has 

been described by Converse (51). 

Sample preparation entailed loading powders into Teflon 

containers in the inert atmosphere box. These containers were 

fitted with Teflon screw caps which were tightly secured before 

removing the containers from the box. Weights of the empty 

container, and container plus sample both before and after the 

measurement were recorded. Diamagnetic corrections included 

a correction for the container. 

Electron paramagnetic resonance spectra 

All epr spectra were obtained on powders at room tempera­

ture or -196° using a Strand Model 601 spectrometer equipped 

with an AFC system which locked the microwave oscillator fre­

quency to the instantaneous cavity frequency. For room tem­

perature measurements the Strand cavity used was the cylindri­

cal having the maximum of magnetic fields on the cylinder 

axis and the middle of the end and side walls. At -196° a 

Varian general purpose rectangular cavity was used. 
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Nuclear magnetic resonance spectra 

The Varian A60 and HA-100 instruments were used for the 

examination of N.M.R. spectra of benzene solutions. Samples 

were prepared in vacuum. Tetramethylsilane was added as an 

internal standard for runs on the A-60 spectrometer. 

Electronic spectra 

Solid state spectra were obtained using a Beckraann DU 

Spectrophotometer with reflectance attachment. Samples were 

mounted as dilute powders with dry MgC03 as diluent and as 

reference. The cell used has been previously described (12). 

Solution spectra were recorded using a Gary Model 14 

Spectrophotometer. Cylindrical fused silica cells 1 cm. long 

and adapted for use at low pressure (12) were used. Powdered 

samples were loaded in the dry box and the cell plus adapter 

was evacuated to ca. 10'^ Torr. Solvent was vacuum distilled 

onto the sample. After sealing off the cell assembly, solvent 

and/or solutions of different concentrations could be trans­

ferred through a medium porosity ground glass frit into the 

silica cell. After determining the spectra of the most con­

centrated solutions they were analyzed for niobium using the 

technique described in the analytical section. 

Vibrational spectra 

Solid state spectra were obtained by Miss E. Conrad using 
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either a Beckmann IR-7 (1400-600 cm"^) or Beckmann IR-11 (800-

42.5 ctn"^) spectrophotometer. Samples were prepared in the 

inert atmosphere box and were mounted as nujol mulls between 

cesium iodide or polyethylene windows. Mulls were prepared 

immediately before recording the spectra. The average time to 

record a spectrum was ça. one hour. Mulls were stable over 

several hours in the cell. 

The same instruments were used to record solution spectra. 

Solutions of the complexes were contained in polyethylene 

molded cells of 0.2 or 0.5 mm. pathlength. These cells were 

purchased from Barnes Engineering Company, Instrument Division, 

Stanford, Connecticut. 

Molecular weight determinations 

Molecular weights were determined cryoscopically in 

benzene. The apparatus has been described by Torp (12). A 

sufficient cooling rate was maintained by submersing the 

apparatus in a sodium chloride-ice bath and by constant stir­

ring of the solution with a magnetic stirring bar. 

Oxidation state determination 

A weighed quantity of the solid was treated in the 

absence of air with 25 cc. of 0.1 N ferric ammonium sulfate. 

A white precipitate formed upon moderate heating of the mix­
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ture. Heating was continued for one hour and the mixture was 

then cooled to 25° and diluted with 25 cc. of 0.1 N sulfuric 

acid. After treating the mixture with three drops of ferroin 

it was titrated with a standard cerium(IV) solution. In this 

manner an average oxidation number of 4.00 + 0.01 was estab­

lished for niobium in pure NbBr^. 

Synthesis 

Niobium(IV) halides 

Niobium(IV) halides were synthesized in evacuated Pyrex 

tubes by the chemical reduction of the niobium(V) halide with 

niobium metal. The sealed tubes containing the reactants were 

heated for 4-5 days in the temperature gradient of a metal-

lined double furnace. This gradient was 400°/250° for the 

chloride, 410°/350° for the bromide and 270°/35° for the 

iodide (4). 

Anal. Calcd. for NbCl^: Nb, 39.59; CI, 60.41. Found: 

Nb, 39.74; CI, 60.26. Calcd. for NbBr: Nb, 22.52; Br, 77.48. 

Found: Nb, 22.68; Br, 77.32. Calcd. for Nbl^: Nb, 15.47; 

I, 84.53. Found: Nb, 15.03; I, 84.97. Halide by difference. 

Tetrachlorobis(dimethyIsulflde)niobium(IV) 

This material was obtained by the direct reaction of nio­

bium (IV) chloride with excess dimethyIsulfide. Anhydrous 
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niobium(IV) chloride was placed on the medium porosity frit of 

a Soxhlet extractor which had been modified for work in high 

vacuum. The vessel was outgassed at ca. 10"^ Torr and excess 

dimethylsulfide was vacuum distilled into the extractor. 

After isolating this system from the vacuum line the solvent 

was warmed to initiate reflux. A violet extract formed initi­

ally which after several hours gave a dark red solution. The 

reaction was allowed to proceed to completion. Excess di­

methylsulfide was removed in vacuum into cold traps. A dark 

brown solid remained which had the composition NbCl4(8(0113)2)2* 

Anal. Calcd. for NbCl4(8(CH3)2)2: Nb, 25.88; CI, 39.50. 

Found: Nb, 26.08; CI, 39.49. 

If the compound NbCl4(S(CH3)2)2 was outgassed at 10 ̂  

Torr for 12 hours a red powder formed for which niobium anal­

ysis was consistent with the composition NbCl4(S(CH3)2)• 

Anal. Calcd. for NbCl4(S(CH3)2): Nb, 31.30. Found; 

Nb, 31.06. 

Tetrachloro(dimethylsulfide)niobium(IV) 

Approximately 2.0 g. of NbCl^(8(0113)2)2 was extracted in 

vacuo with anhydrous benzene. A red solution formed from 

which a red crystalline solid separated. Excess benzene was 

removed into cold traps leaving a residue of red crystals and 
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an orange powder which was outgassed at 10"^ Torr for 12 

hours. The crystals reduced to an orange powder upon grind­

ing. Chemical analysis was consistent with the composition 

NbCl4(S(CH3)2). 

Anal. Calcd. for NbCl4(S(CH3)3): Nb, 31.30; CI, 47.77; 

C, 8.09; H, 2.04. Found: Nb, 31.02; CI, 47.26; C, 8.07; H, 

2.19. 

Tetrachloro(diethylsulfide)niobium(IV) 

Using the same technique applied for NbCl4 (S (0113)2) 2 gave 

a dark red solid. The solid was outgassed at 10"^ Torr for 

twelve hours without decomposition being apparent. Chemical 

analysis was consistent with the composition NbCl4(S(CH2CH3)2)• 

Anal. Calcd. for NbCl4(S(CH2CH3)2): Nb, 28.59; CI, 43.65; 

C, 14.79; H, 3.10. Found: Nb, 28.83; CI, 43.65; C , 14.55; 

H, 3.09. 

Tetrabromobis(dimethylsulfide)niobium(IV) 

Essentially the same procedure was used here as has been 

described for the analogous chloride complex. With 2.0 g. of 

niobium(IV) bromide as starting material the yield was 90-95%. 

The final product was a dark green crystalline solid having 

the composition NbBr^(8(0113)2)2-

Anal. Calcd. for NbBr4(S(CH3)2)2: Nb, 17.31; Br, 59.54; 



www.manaraa.com

28 

C, 8.95; H, 2.25. Found: Nb, 17.47; Br, 59.14; C, 8.14; H, 

1.75. 

Tetrabromo(diinethylsulf ide)niobiuin(IV) 

A red crystalline solid having the composition NbBr^ 

(5(0113)2) was obtained by recrystallization of NbBr^(S(CH3)2)2 

from benzene. Yield was 100 per cent. 

Anal. Calcd. for NbBr^(S(CH3)2): Nb, 19.57; Br, 67.34; 

C, 5.06; H, 1.27. Found: Nb, 20.30; Br, 66.31; C, 5.15; H, 

1.39. 

Tetrabromo(diethylsulfide)niobium(IV) 

This compound was prepared in a manner analogous to the 

previous description. It was isolated as a dark red solid 

which was stable under dynamic vacuum after ca. 12 hours. 

Anal. Calcd. for NbBr4(S(CH2CH3)2): Nb, 18.48; Br, 

63.58; C, 9.56; H, 2.00. Found: Nb, 18.44; Br, 64.08; C, 

9.23; H, 2.09. 

Tetraiodobis(dimethylsulfide)niobium(IV) 

A dark brown crystalline solid was obtained using the pro­

cedures applied for synthesis of the analogous chloride and 

bromide compounds. The product was dried under dynamic vacuum 

over a 12 hour period. 

Anal. Calcd. for Nbl4(S(CH3)2)2: Nb, 12.82; C, 6.65; 

H, 1.67. Found: Nb, 12.95; C, 6.01; H, 1.49. 
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Tetrahalobis (tetrahvdrothiophene)niobltim(IV) 

The complexes NbX^(8(0112)4)2 (X = CI, Br and I) were pre­

pared by placing 1 g. of NbX^ on the medium porosity frit of a 

modified Soxhlet extractor. This system was evacuated to ca. 

10'^ Torr and an excess of tetrahydrothiophene was distilled 

into the flask. After isolation of the assembly from the 

vacuum system, the flask containing the excess ligand was 

warmed to initiate reflux. Generally three to four days were 

required to complete the reaction. Excess solvent was removed 

into cold traps and the residual crystalline solids were dried 

under dynamic vacuum over a twelve hour period. Products were 

stored in capped vials in the inert atmosphere box. 

With NbCl^ a dark red solution rapidly formed and upon 

removal of excess solvent a red crystalline solid separated. 

Chemical analysis was consistent with the composition NbCl^ 

(S(CH2)4)2. 

Anal. Calcd. for NbCl4(S(CH2)4)2-' Nb, 22.60; Cl, 34.50; 

C, 22.81; H, 3.83. Found: Nb, 22.72; Cl, 34.64; C, 22.34; 

H, 3.70. 

A deep red solution from which a dark green crystalline 

solid was recoverable was obtained with NbBr4. Analytical 

data were consistent with the composition NbBr4(S(CH2)4)2* 
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Anal. Calcd. for NbBr4(8(^2)4)2: Nb, 15.78; Br, 54.28; 

C, 16.32; H, 2.74. Found: Nb, 15.80; Br, 54.48; C, 16.24; 

H, 2.77. 

With Nbl^ a dark brown solid of composition Nbl^ 

(8(0112)4)2 was obtained. This was dried, as above, under 

dynamic vacuum over 12 hours. 

Anal. Calcd. for Nbl4(8(^2)4)2= C, 12.37; H, 2.07. 

Found: C, 11.93; H, 1.94. 

Tetrachlorobis(tetrahydrothiophene)zirconium(IV) 

A 1.0 g. sample of white ZrCl4 was allowed to react over 

several days with excess tetrahydrothiophene in the manner 

described above for NbX4. No color changes were observed. 

The final product was a white powder. 

Anal. Calcd. for ZrCl4(S(CH2)4)2: C, 23.47; H, 3.94. 

Found: C, 23.56; H, 3.91. 

Tetrahalobis(2,5-dithiahexane)niobium(IV) 

Compounds of composition NbX4(dth)2 (X = CI, Br, and I; 

dth = 2,5-dithiahexane) were obtained by direct reaction of 

NbX4 with a solution of excess dithiahexane in ça. 50 cc. of 

dry benzene. A 2-3 g. quantity of NbX4 was introduced into a 

100 cc. round bottom flask to which an excess (10 cc.) of 

dithiahexane had been added. A magnetic stirring bar was 
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introduced and the flask was evacuated to ça. 10"5 Torr, ben­

zene was distilled in, and the flask was isolated from the 

vacuum system. This mixture was stirred continuously at room 

temperature for 4-5 days. During this period all the tetra-

halide reacted. 

With dark brown NbCl^ a tan flocculant precipitate began 

forming after one hour. After about one day no unreacted 

tetrachloride could be observed. The reaction was allowed to 

proceed for three more days. Excess ligand and benzene were 

removed into cold traps and the residual tan solid was dried 

under dynamic vacuum over 12 hours. 

Anal; Calcd. for NbCl4((CH3SCH2 >2)2: Nb, 19.39; CI, 

29.59; C, 20.05; H, 4.21. Found: Nb, 19.92; CI, 29.61; C, 

19.04; H, 3.96. 

From NbBr4 a green precipitate with the composition 

NbBr4(dth)2 was isolated. 

Anal; Calcd. for NbBr^C(CH3SCH2 )2)2* Nb, 14.14; Br, 

48.65; C, 14.62; H, 3.07. Found: Nb, 14.34; Br, 48.63; C, 

14.02; H, 2.98. 

A brown precipitate approaching the composition Nbl^ 

(dth)2 was obtained after a total of ten days of reaction of 

Nbl4 and the benzene solution of dithiahexane. 
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Anal. Calcd. for Nbl^CCCH^SCHg >2)2: Nb, 10.99; I, 

60.07; C, 11.37; H, 2.39. Found: Nb, 11.01; I, 62.03; C, 

10.61; H, 2.44. 

Tetrachlorobis (2,5-dithiahexane) zirconitim (IV) 

Using the same procedure as has been described above a 

white powder having the composition ZrCl4((CH3SCH2 )2)2 was 

obtained from the reaction of dithiahexane with ZrCl^. 

Anal. Calcd. for ZrCl4((CH3SCH2 >2)2= Zr, 19.10; C, 

20.14; H, 4.22. Found: Zr, 19.05; C, 20.09; H, 4.03. 
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RESULTS AND DISCUSSION 

Preparation and Properties of Complexes 

Direct reactions of excess dimethylsulfide with niobium 

(IV) halides proceed according to Equation 3. 

NbX4 + S(CH3)2 " NbX4(S (CH3) 2) 2 " O) 

(X = CI, Br, and I) 

Products are isolated as powders which differ in their stabil­

ity to drying under dynamic vacuum. Thus the chloride is com­

pletely converted to NbCl4R2S, the bromide is incompletely 

converted to NbBr4R2S, and Nbl4(R2S)2 is unaffected by expo­

sure for twelve hours to a dynamic vacuum. Although the 

reactions were carried out in the presence of a large excess 

of dimethyl sulfide no evidence for coordination of more than ~ 

two moles of the sulfide per mole of NbX4 was indicated. 

Solubility studies in dimethyl sulfide and benzene indicate a 

low to moderate solubility in the former and a low solubility 

in the latter. Upon exposure to the atmosphere the compounds 

rapidly decomposed as indicated by color changes and the easy 

detection of the odor of the sulfide. Both the bromide and 

iodide complexes exhibited respective incongruent melting 

points of 91-94° and 100-103°. 

Recrystallization in vacuo of NbX4 (8(0113)2) 2 ~ CI and 
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Br) from benzene gave red crystalline solids for which the 

analytical data were consistent with the formula NbX^S(0113)2. 

Spectral data to be subsequently discussed suggest that these 

are easily converted to the bis complexes in excess ligand. 

Equation 4 is descriptive of these observations. 

C6H6 
NbX4(S(CH3)2)2 ^ NbX4(S (^3)2) + S(CH3)2 (4) 

S(CH3)2 

(X = CI and Br) 

These monoadducts exhibited melting points of 142-144° and 

134-137°, and appeared to melt with decomposition. Pure mono­

adducts could be obtained directly if excess diethyl sulfide 

was allowed to react with NbX^ (X = CI and Br). No evidence 

for solid phases having a composition NbX4(S(CH2CH3)2)2 

found. The observed moderate solubility of the monoadducts in 

excess ligand suggests that in solution bis-adducts are 

present. 

Only bis-adducts were obtained from reactions of NbX4 

(X = CI, Br, and I) and ZrCl^ with tetrahydrothiophene. Anal­

ytical data in every case were consistent with NbX^ (8(0112)4)2 • 

These compounds melt at temperatures comparable to the dimethyl 

sulfide compounds. Because charring and gas formation were 

observed, decomposition at the melting points was evident. 
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Decomposition products were not investigated. Solubilities in 

excess ligand are moderate, and in benzene the solubilities 

are slightly less than 6.0 g/100 cc. at room temperature. 

While very pure crystalline complexes were obtained from tetra-

hydrothiophene, extraction of NbCl^(S(CH2)4)2 with benzene 

left a green residue on the frit of the extractor. Analytical 

data for this residue were consistent with the formulation 

NbCl4(S(CH2)4)i.6' The orange powder recovered from the 

extract was virtually pure NbCl^ (8(0112)4) 2* The reason for 

formation of the green product is unknown. Possibly the ben­

zene was slightly contaminated with moisture and this material 

is an oxygen-containing benzene-insoluble hydrolysis product. 

Insufficient material was obtained for further characterization 

via magnetic studies. It should be noted that better than 95% 

of the NbCl^(S(0112)4)2 recovered in the extract, and this 

compound will be discussed further in the section on far 

infrared studies. Finally, while Fairbrother (7) reports the 

isolation of the apparently seven-coordinate complex NbCl^ 

(3(0112)4)2» here no evidence for a coordination number greater 

than six for Nb(IV) was found. 

With the ligand 2,5-dithiahexane (dth) complexes having 

compositions NbX4(dth)2 (X = CI, Br, and I) were isolated. As 
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described in the experimental section these reactions were 

performed in benzene solutions containing an excess of 2,5-

dithiahexane. All the complexes were virtually insoluble in 

the reaction media and precipitated as fine powders. Since 

2,5-dithiahexane is a bidentate ligand, eight-coordination of 

niobium was immediately suggested. Clark and coworkers (29) 

successfully prepared the eight coordinate complexes NbX4(di-

arsine)2 (X = CI, Br, and I; diarsine = 0-phenylenebisdimethyl 

arsine) from the direct reaction at high temperature of NbXg, 

NbX^, or NbOXg with diarsine. The literature contains no 

other reports of eight-coordinate NbX^B2 (B = bidentate 

ligand). The tetrahalides VCI4, TiCl^, and TiBr^ form eight 

coordinate complexes with diarsine (37), but only six coordin­

ate complexes form with dithiahexane. Zirconium(IV) chloride 

forms an eight coordinate dodecahedral complex with diarsine, 

and in this study a white powder having the composition 

ZrCl4(dth)2 was obtained from its reaction with 2,5-dithia­

hexane. 

As described in the experimental section, all of the com­

plexes which have been discussed decompose in air or moisture. 

Instability increases from the chloride to the iodide in a 

series, and the dimethyl sulfide complexes are less stable 
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than the 2,5-dithiahexane species. Upon treatment of any of 

these solids with water a dark blue solution forms from which 

a white precipitate slowly deposits upon standing in air. 

Treatment of the blue solutions with concentrated ammonia 

induces immediate precipitation of a hydrous dark brown solid, 

probably Nb02 XH2O. This was readily oxidized by concentrated 

nitric acid to white Nb205*xH20. Treatment of the tetrahydro-

thiophene complexes with acetone in air gave red solutions 

which slowly lost their color and deposited white precipitates. 

In order to ascertain the nature of the species in the 

solid and solution phases a detailed study of their infrared 

spectra, magnetic behavior, and electronic spectra was under­

taken, and remaining sections will be concerned with those 

results. 

Complexes of the Form MX^L2 

The synthesis and some properties of the complexes NbX4L2 

(X = CI, Br, and I; L = (0113)28 and (0112)48) and ZrCl^l^ were 

described in the previous section. In this section the results 

of studies of their infrared spectra (1600-600 cm"^), far-

infrared spectra (400-42.5 cm"^), magnetism, and electronic 

spectra will be given, in that order. 
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Infrared spectra (1300-600 cm"^) 

Infrared spectra of the uncoordinated ligands and the 

complexes were recorded. Table 1 summarizes the results. 

Table 1. Infrared spectra of (0113)28 and NbX4((CH3) 2S)j^ 

(n = 1 and 2; X = CI, Br, and I) 

Compound V(cm' 

(CH3)2S 

NbBr4(S(CH3)2)2 

Nbl4(S(CH3)2)2 

NbCl4(S (0113)2) 

NbBr4(S(CH3)2) 

1027m-s 972m-s 742w 692m 
(CH3 rock) (CH3 rock) (C-S str) (C-S str) 

1028m 

1030m 

1031m 

102 6w 

971m 

970m 

974m 

970w 

720m 

722m 

730,723w 

722w 

675w 

675w 

680,670w 

675vw 

(s = strong, m = moderate, w = weak, vw = very weak) 

Infrared spectra of dimethyl sulfide have been reported (44) 

and most of the observed bands have been assigned to funda­

mental modes of this molecule. In complexes containing 

dimethylsulfide, bands due to carbon-sulfur stretching modes 

are expected to be the most sensitive to coordination via 

sulfur, however, it has been reported (52) that these bands 

are usually weak and that shifts arising from coordination of 

sulfur are usually small. Nevertheless, Fowles et al. recently 
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reported that carbon-sulfur bands at 692 (A^) and 742 cm"^ (B^) 

in the spectra of dimethyl sulfide were shifted, respectively, 

by 4-27 and 12-17 cm"^ in spectra of TiX3L2 (L = dimethylsul-

fide) complexes. The presence of coordinated dimethyl sulfide 

is also inferred for the complexes reported here, since the 

same bands are shifted to lower energy in spectra of the com­

plexes by ca. 20 cm'^. 

The infrared spectrum of tetrahydrothiophene has not been 

studied in detail, but from studies of its complexes (53) it 

has been inferred that the band at 685 cm~^ in the free ligand 

spectrum is a ring stretching mode involving the sulfur atom. 

Lewis, Miller, Richards, and Thompson (53) report that this 

band shifts to ca. 670 cm'^ in spectra of the complexes 

MX](S (CH2)4)2 (M = Al, Ga; X = Cl, Br). More recently Fowles, 

Lester, and Walton (43) reported shifts to lower energy of 13 

to 20 cm"l of the 685 cm"^ band in spectra of the complexes 

TiX](8(0112)4)2 (X = Cl, Br, and I). In the present study this 

band is observed to shift by ca. 24 cm~^ to lower energy for 

NbX4(S(CH2)4)2 (X = Cl, Br, and I) as well as ZrCl4(S(CH2)4)2-

It is concluded then that coordinated tetrahydrothiophene is 

present. 
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Far infrared spectra (400-42.5 cm"^) 

Far infrared spectra of the ligands, the anhydrous hal-

ides, and the complexes (solids and solutions) were recorded. 

These will now be discussed in turn. 

Dimethyl sulfide exhibits a very broad weak band at 282 

cm"^ which has been assigned to a C-S-C deformation mode (44). 

No other bands are observed in spectra of the pure ligand. 

Spectra of tetrahydrothiophene exhibit bands at 467(moderate), 

320(weak and broad); "and 300 cm^ ̂(weak and broad). As no 

definitive studies of tetrahydrothiophene have been done, 

these bands remain unassigned. Pure benzene exhibits two 

bands of weak-moderate intensity at 400 cm~^ and 300 cm"^. 

There appear to have been no reported far infrared spectra 

of niobium(IV) halides in the literature. A detailed structure 

determination by Dahl and Wampler (2) of a-Nbl^ has been re­

ported as well as some of the details of a similar investiga­

tion of NbCl^. McCarley and Torp (1) report the results of 

powder x-ray diffraction studies which indicate that NbCl^ 

and NbBr^ are isomorphous, however, it did not appear that 

they were isomorphous with a-Nbl^. This has been confirmed 

by Schafer and Schnering (3). The a-Nbl^ structure con­

sists of linear infinite chains formed by Nbig octahedra 
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sharing opposite edges. Niobium atoms are shifted from the 

centers of their octahedra in pairs to form alternating metal-

metal bonds. While the site symmetry is Dahl (54) con-

2 13 
sidered the unit (^^212)1414/2 having D2^ symmetry in discus­

sions of the electronic structure. It is this model which is 

used in this discussion of far-infrared data. Table 2 shows 

the assignments based on the model given in Fig. 1. 

Table 2, Far infrared spectra of NbX^ (X = CI, Br, and I) and 

assignments of Nb-X stretching bands ( U in cm"l) 

Assignment NbCl4 NbBr^ Nbl4 

430(s) 315(s) 227(s) 
U(Nb-xl) 

390(s) 286(s) 208,200(s) 

360(s) 245 (w) 165(s) 
U(Nb-x2) 

290(m,sh) 215(s) 150(m,sh) 

265(s) 190(s) — — 

L'(Nb-xj) 
245(s) 178(m,sh) - -

Unassigned 220(m,sh) 154 (m) 110(m) 

175 (w,m) 115(m,sh) 80(w,sh) 

130 (w) 95 (m) 65 (m) 

95(s) 72(s) 57(m) 
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Fig. 1. Model used as basis for assignments of stretching bands in far infrared 
spectra of NbX^ (X = CI, Br, and I) 
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Figure 2 gives the spectra of the halides. For the model 

chosen, and considering stretching modes only, three different 

types are expected. These arise, respectively, from terminal 

halogens, bridging halogens (across metal bond), and bridging 

halogens (to adjacent octahedra). Bond distances data for 

NbCl^ (3) and Nbl^ (2) indicate that these distances increase 

in the order in which they have been presented with the first 

two distances being shorter than the last. It is expected 

then that bond orders and therefore the force constants and 

frequencies associated with metal halogen stretching modes 

will decrease in the order Nb-X^ > Nb-X^ > Nb-X^. Halogen-

sensitive bands are clearly evident upon comparing the spectra. 

1 — 1 
For the chloride u(Nb-X ) were assigned as 430 and 390 cm" , 

for the bromide as 315 and 286 cm while for the iodide 

three bands occurring at 227, 280, and 200 cm ^ are found where 

2 only two were anticipated. Bands due to u(Nb-X ) occur at 360 

and 290 cm"^ for X = CI, 245 and 215 cm ^ for X = Br, and 165 

and 150 cm~^ for X = I. The intensity of the band at 245 cm ^ 

in the bromide spectrum is much lower than for corresponding 

q 
bands in the chloride and iodide. For u(Nb-X ) bands appear 

at 265 and 245 cm~^ and 190 and 178 cm~^ for the chloride and 

bromide, respectively, but the two bands expected at approxi-
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X = Cl 

•H 
Br 

500 0 400 300 100 200 

(cm'l) 

Fig. 2. Far infrared spectra of NbX^ (X = CI, Br, and I) 
and ZrCl4 (nujol mulls) 
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mately 120-130 cm"l for a-Nbl^ are not observed, instead only 

an ill-defined band of low intensity is observed. It should 

be noted that signal-to-noise ratios are small in this region 

resulting in loss of sensitivity. Cognizant of this fact it 

is concluded that the model assumed may well be applicable to 

all three niobium(IV) halides, however, further studies of 

Raman spectra would be of assistance in substantiating these 

conclusions. 

Weidlein, Miiller, and Dehnicke (55) report both the Raman 

and infrared spectra of ZrCl^. Metal halogen stretching funda­

mentals were assigned in Table 3 on the basis of a model having 

D2h symmetry and consisting of a bioctahedral chlorine bridged 

dimer which shares axial chlorines with adjacent dimers. In 

the far infrared spectrum of ZrCl^, which is reported in this 

study in Fig, 2, broad bands lacking much structure are 

observed where the other workers achieved resolution. It is 

of interest that earlier studies (56,57) support a molecular 

lattice of Snl^ type for ZrCl^, while the data of Weidlein et 

al. support six-fold coordination of zirconium in ZrCl^. 

The solid state spectra of NbX^(S(€112)4)2 (X = CI, Br, and 

I) and ZrCl^(S(€112)4)2 reproduced in Fig. 3. For such com­

plexes both cis and trans isomers can be expected. Beattie, 
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Table 3. Far infrared spectrum and assignments of bands for 
ZrCl4 ( V in cm"l) 

Assignment This work Weidein, ̂  al. (55) 

^s(B3u) 430(s) 431(vs) 

^as(B2u) 400(s,br) 388 (s) 

^as(B3u) 305 (m) ^as(B3u) 
300(s,br) 

^s (Blu) 291(s) 

^ringC^Zu) 
270(m,sh) 

283 (m) ^ringC^Zu) 
270(m,sh) 

^ringfBgu) 271(s) 

(B3u) 229(m) 233 (m) 

(Bsu) 
196(s) 204(s) 

(B2u) 

Unassigned bands 158 (w), 131 (s). 154 (w), 128 (s). 
lOl(m), 53(m-s) 98 (m) 

et al. (58) by a normal coordinate analysis, established that 

cis isomers should exhibit spectra having at high energy a 

triplet of closely spaced bands due to M-X stretching modes 

and transforming as the b^, b2, and ai representations of the 

point group A fourth band (a^) should occur at consider 

ably lower energy. This result assumed metal-ligand force 

constants an order of magnitude lower than for metal-halogen. 

If these are comparable, for a cis complex as many as six 
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Fig. 3. Far infrared spectra (nujol) of tetrahydrothiophene 
complexes of NbX^ (X = Cl, Br, and I) and ZrCl^ 
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bands could occur in these same regions. For a trans isomer 

when the metal-ligand force constant is low relative to metal 

halogen only one band (e^) is expected in the region where 

three occur in the spectrum of cis-adducts. Where these force 

constants are comparable at least two bands can appear in this 

region (ey+a2u) with a possibility of a third if the e^-vibra-

tion is rendered non-degenerate by solid state effects. Anal­

ysis of the present spectra proceeded initially on the assump­

tion that metal-ligand and metal-halogen stretching force 

constants were very different. It quickly became evident that 

such was not the case for the bromide. Results are summarized 

in Table 4. 

Several halogen-sensitive bands are evident upon compari­

son of the spectra of NbX^(S(CH2)4)2 ~ CI, Br, and I). A 

closely spaced triplet occurs at 397, 372, and ~340 cm"^ for 

X = CI and 263, 247, and 229 cra"^ for X = Br. These are 

assigned as the three higher energy Nb-X stretching bands 

expected for a cis isomer. Dougherty (31) reports only two 

very broad bands at 365 and 334 cm"^ for NbCl4(ac)2 (ac = 

acetonitrile) and a dipole moment study in benzene (12) sup­

ports a cis configuration. A closely spaced triplet at 280, 

256, arid 235 cm~^ in the spectrum of NbBr4(ac)2 (31) and 
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Table 4. Far infrared spectra and assignments for NbX^. 
(S(CH2)4)2 (X = CI, Br, and I) ( uin cm"l) 

Assignment X = CI X = Br X = I 

V(Nb-X) 396(m) 263 (s) 227 (w) 
(2ai+hi+h2) 372(s)  247 (m) 200(s,br) (2ai+hi+h2) 

340(m,sh) 229(w-m) 
245(w) 200 148(w-m) 

U(Nb-S)^ 302 (w) 307 (w-m) 297(ra) 
278(w) 278(m,sh) 272(w) 

U(Nb-S-C)* 235(w) 

U(X-Nb-X) 162(m-s) 96 (m) -

148(m-s) 85 (m) -

Unassigned 100 (w) 190(w) 98 (w) 
bands 138(ww) 

^hese assignments are tentative. 

assigned as Nb-Br stretching bands also suggest a cis-stereo-

chemistry. This has been confirmed by Dougherty (31) using 

the techniques of Single Crystal X-ray Diffraction Analysis. 

Lower energy bands at ça. 300 and 275 cm ^ in the spectra of 

the chloride, bromide, and iodide are tentatively assigned as 

metal-sulfur stretching bands. These are most clearly re­

solved in the spectrum of the iodide and support the assign­

ment of a cis-stereochemistry for this complex. Added 

complications are the occurrence of a broad, weak ligand 
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absorption at ca. 300 cm"^ discussed earlier, as well as the 

occurrence of Nb-Br and Nb-S in virtually the same region. As 

expected in such a case a total of six bands are observed in 

the region of Nb-Br stretching vibrations. A fourth Nb-X 

stretching is observed at ca. 245 cm"^ (X = CI) and ca. 198 

cm~^ (X = Br). Metal-halogen bending vibrations are assigned 

as 163 and 148 cm ^ (X = CI) and 96 and 85 cm ^ (X = Br). 

Bands assigned as M-S-C bending reportedly occur at ca. 

250 cm~^ in spectra of cis-PtCl^(S(CH3)2)2 (60) though these 

are possibly due to torsional modes raised in the solid. In 

the present systems bands appear at 250 cm~^ in the spectra of 

NbCl4(ac)2 and NbCl4(S(CH3)2)2 and are assigned here as the 

fourth Nb-Cl stretching mode (a^). The weak band at 235 cm~^ 

for NbCl4(S(CH3)2)2 is tentatively assigned as Nb-S-C bending. 

A band is expected for the bromide near the region of the 

fourth Nb-Br stretching band but is not observed, perhaps 

because of poor resolution. Additional comment is in order 

concerning spectra of Nbl4L2 (L = monodentate donor) complexes. 

No such spectra have been reported to date. In the course of 

this investigation Nbl4(ac)2 was prepared using the procedure 

of Torp (12), and its far infrared spectrum was recorded. The 

spectrum is reproduced in Fig. 4. Its similarity to that of 
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4. Far infrared spectra of Nbl4L2 (L = S(CH3)2 and CH3CN) (nujol) 
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NbI(^(S(CH2)4)2 is striking. Two bands at high energy in both 

spectra exhibit a marked sensitivity to the nature of the 

ligand thus supporting the conclusion that they are predomi­

nantly due to Nb-L stretching. In the acetonitrile these 

bands at 306 and 264 cm"^ are assigned as Nb-N stretching 

bands. 

Data for ZrCl^(S (0112)4)2 are given in Fig. 3 and Table 5. 

Table 5. Far infrared spectrum and assignment of bands for 
ZrCl4(S(CH2)4)2 ( Uin cm"!)^ 

Assignment ZrCl4(S(CH2)4)2 

U (Zr-Cl)eu 340(s ,br) U (Zr-Cl)eu 
320(s,sh) 

U(Zr-S) 290(m,sh) 
ô(Zr-S-C) 232 (w-m) 
ô(Cl-Zr-Cl) 218(w,sh) 
n(Cl-Zr-Cl) 140(m) 
Unassigned bands 75 (w-m) 

Two maxima can be identified at 340 and 320 cm~^ on what is 

otherwise a very broad band. A shoulder appears at 290 cm 

By comparison with the spectra of NbX4L2 complexes it is 

expected that force constants for Zr-Cl and Zr-S will not be 

too different, hence a trans isomer cannot be eliminated in 

which Zr-Cl and Zr-S stretching frequencies are closely 
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similar and for which the band due to the former, transforming 

as an representation of the point group is split by 

solid state effects. While the total number of expected infra­

red bands is not a highly indicative datum, it is perhaps 

relevant that only five to eight bands (2a2u + 3e^) are 

expected for a trans isomer while thirteen (6ai + 3bx + 4b2) 

are expected for a cis form. At most seven bands are present 

in the spectrum of ZrCl^(8(0112)4)2- The strong similarity of 

this spectrum to that of trans-PtCl^(S(CH2))2 (60) is also 

noted. 

Only the complexes NbX^(8(0113)2)2 (X = CI, Br, and I) 

remain to be discussed. As noted earlier, characterization of 

NbCl^(8(0113)2)2 was totally hindered by its high instability. 

Far infrared spectra of NbX4(8 (0113)2)2 (X = Br and I) were 

recorded as nujol mulls. Both sets of spectra were consistent 

with a cis-stereochemistry. Assignment of Nb-S stretching 

bands in the case of the bromide was rendered difficult by the 

low resolution achieved, nonetheless, the occurrence of four 

bands in the region 220-300 cm"^ is inconsistent with a trans-

stereochemistry for this complex. The spectrum of the iodide 

complex given in Fig. 4 is similar in all respects to the 

spectrum of Nbl4(8(OH2)4)2' Two bands attributable to Nb-S 
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stretching occur at 316 and 288 cm'^, while a broad strong 

band assigned as an Nb-I stretch occurs at 205 ctn'^ with 

shoulders at 164 and 144 cm'^. 

As described in the experimental section some investiga­

tions of solution far infrared spectra were initiated. The 

results of these studies are depicted in Fig. 5 and Table 6. 

Table 6. Far infrared spectra of solutions of NbX^;^ (8(0112)4) 2 
X = CI and Br ( f/ in cm"^) 

Solvent CôHô S(CH2)4 ^6^6 S(CH2)4 

X = CI 

398(m) 
380(m) 
362(s) 
320 (w) 
300 (w) 

396(w,sh) 
366(s) 
340 (m) 
304(w-m) 

280(w) 
250(w,sh) 
230 (w) 

X = Br 

400(m) 

300(m,sh) 

266(8) 
253 (s) 
229(m,sh) 
200 (w) 

266(s) 
253(s) 
227(ra) 

Benzene peak. 

Comparison of the spectrum of solid NbC 14(8 (0112)4) 2 with that 

of the complex dissolved in tetrahydrothiophene reveals a one-

to-one correspondence over the region 200-370 cm Above 

this region a band present at 306 cm'^ in the solid state spec 

trum is absent in the solution spectrum. This suggests that 
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Fig. 5. Far infrared spectra of NbX4(8(0112)4)2 ~ CI and 
Br) in C5H5 and S(CH2)4 
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this band is due to solid state effects. Admittedly such 

effects are frequently introduced as explanations when one is 

presented with anomalous results, however, data to be subse­

quently presented are consistent with the same species being 

present in both solution and solid phases. The spectrum of 

the benzene solution of NbCl^(S(CH2)^)2 is not so easily 

rationalized. A group of three closely spaced overlapping 

bands is found at frequencies 396, 380, and 365 cm ^ with a 

lower energy doublet at 320 and 300 cm~^. The number of bands 

in this region is consistent with a cis-complex being present 

in solution, however, the absence of a clearly defined band at 

340 cm"l and the presence of a band due to benzene at 396 cm~^ 

complicates this interpretation. Possibly some impurity bands 

account for the differences. Aside from solubility problems 

rendering difficult or impossible the detection of weak bands, 

the solid state and benzene and tetrahydrothiophene solution 

spectra of NbBr^ (S (0112)4) 2 virtually identical in the 

region of Nb-Br stretching bands (200-300 cm~^). It is con­

cluded that the same cis-isomer is present in each phase. 

Discussion of solution spectra of NbX^(S(CH3)2)2 ~ CI 

and Br) will be deferred until the monoadducts NbX^.(8(0113)2) 

are considered in a later section. 
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Magnetic susceptibilities 

Prior to discussing the results of these studies those 

aspects of the theory of magnetic susceptibilities which are 

relevant will be considered. The molar magnetic susceptibility 

of a paramagnetic compound is given by Equation 5 (59), where 

% = (NB^^i^/3kT) + XD + Xtip (5) 

N = Avogadro number, 6.023x10^^ mole"! 

B = Bohr magneton, 0.9273x10*20 erg gauss"! 

M- = magnetic moment in Bohr magnetons 

k = Boltzmann constant, 1.3804x10"^ erg deg"! 

T = absolute temperature, °K 

Xg = diamagnetic susceptibility, emu/mole 
and 

X/Jip = temperature independent susceptibility, emu/mole. 

Plots of the experimental molar susceptibility vs 1/T yield 

straight lines in cases of Curie behavior, and the intercepts 

on the Xj^ axis are the sum of the temperature independent sus­

ceptibilities, Xj) + Xxip- Knowing the value of Xq for specific 

atoms, ions, and molecules from tables, the value of Xtip 

be calculated. This temperature independent susceptibility 

comes about by the mixing into the ground state of small 

amounts of some higher state under the influence of the mag­

netic field. The net result is a lowering of the energy of 
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all components of the ground state by an amount proportional 

to the square of the magnetic field and inversely proportional 

to the energy separation of the upper and ground states (60). 

The slope of a Curie plot is used to calculate the magnetic 

moment via Equation 6. In this equation the constant 

= 2.828 y (6) 

is obtained by substitution of the values for the constants in 

Equation 3. When the % versus T"^ plots exhibit curvature it 

is possible to describe the behavior of as a function of T 

using the Curie-Weiss law described by Equation 7. Here 0 is 

= (NB2n2)/3k(T+e) + XD + Xtip (7) 

a constant which in magnetically dilute systems seldom has a 

basic significance. A much used procedure is to calculate an 

effective magnetic moment using Equation 8. Since for the 

^eff ~ 2.828 ̂ ('^"Xj))T (8) 

majority of paramagnetic compounds values of M-^ff are given, 

these are reported here and used in later discussions. Dia-

magnetic core corrections which were applied were obtained 

from the literature (61,62) and are given in Table 7, others 

were obtained by summing from known values. 

Magnetic properties of transition metal complexes can be 

discussed relative to simple Kotani theory (63), or alterna-
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Table 7. Diamagnetic core corrections (Units: 10"6 emu/mole) 

Ions XD Molecules XD 

Nb^+ 14 S(CH3)2 -45 

CI" -26 S(CH2CH3)2 - 68 

Br~ -36 S(CH2)4 -62 

I" -52 (CH3SCH5)2 -90 

tively the theory of Stevens (64), later modified and applied 

by Bleaney and O'Brien (65) to K2Fe(CN)g, can be employed. 

These workers found that epr data for K2Fe(CN)g (ground state 

configuration t^g' rhombic distortion) could not be correlated 

with theory unless an extra orbital reduction factor k was 

introduced into the magnetic moment operator, viz. (kL+2S)3H. 

This factor k accounted for modifications of the t2g orbitals 

due to rr-bonding between these orbitals and suitably oriented 

ligand orbitals. By varying the spin-orbit coupling constant 

to give the best fit with theory, k for K3Fe(CN)g was found 

to be 0.87. The delocalization factor k was related to the 

g-factors via Equations 9. Here 6 is directly related to the 

gg = 2cos^0[sin^<*-(l+k)cos^or] + 2sin^0(k-l) 

%[g^4-gy] = -2cos^0rcosQr + (k/^/2)sincv] (9) 

%[gy-gy.1 = 2sin^6rcosQ'+(k/ >/2)sina3 
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size of the rhombic distortion. When 0 approaches zero Equa­

tions H), applicable for axial distortions, are obtained, 

êz ~ 8|| = 2[sin^«-(l+k)cos^Q^] 

^fgjj+gy] = gj^ = -2[sin^a?+ ̂ /zk cos^sin»] (10) 

%[gx-gy] = 0 

Figgis (66) considered this case and its effect on magnetic 

O 
properties arising from cubic field Tg terms. The effective 

magnetic moment was calculated for different values of v, k, 

and X with v being defined by Equation 11 as the ratio of the 

v  = A / X  =  V 5 ( c o s ( y - t a n Q f -  V 2 )  ( 1 1 )  

energy difference of the split T2 level to the spin-orbit 

coupling constant. When the ^T2 degeneracy is removed by a 

low symmetry field component leaving an orbital singlet as the 

lowest level A is positive, otherwise it is negative. Re­

sults of these studies by Figgis were published as a set of 

tables (66), and are used later in this section. 

All the bis-adducts which were studied here obeyed the 

Curie law. Figures 6 and 7 are the Curie plots, and Table 8 

contains the magnetic parameters obtained from the graphs. No 

data were obtained for NbCl^(S(CH3)2)2• ^ compound of this 

composition (see experimental section) was converted to 

NbCl4(S(CH3)2) during initial evacuation of the balance 
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Fig. 6. Variation of molar magnetic susceptibility with 
reciprocal temperature for NbX4 (8(0113)2) 2 
(X = Br and I) 
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Fig. 7. Variation of molar magnetic susceptibility with 
reciprocal temperature for NbX4(S(0112)4)2 = CI, 
Br, and I) 
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housing to 10"^ Torr. An analysis of the material at the end 

of the experiment was consistent with this composition. 

Anal. Calcd. for NbCl^CS(^3)2) î Nb, 31.30. Found: 

(Before) Nb, 26.10; (After) Nb, 31.06. 

Table 8. Magnetic results from Curie plots 

Compound nCB.M.) -XD'lOG 

(emu/mole) 
XTIP-10 

(emu/mole) 

NbCl4(S(CH3)2)2 — — — — — — 

NbBr4(S(CH3)2)2 1.17 248 198 

Nbl4(S(CH3)2)2 1.11 314 154 

NbCl4(S(CH2)4)2 1.21 254 180 

NbBr4(S(CH2)4)2 1.25 294 174 

Nbl4(S(CH2)4)2 0.64 358 148 

Similar difficulties were encountered with the bromide and 

iodide as well as with the tetrahydrothiophene complexes, but 

the weight losses were seldom greater than 1-2%. As indicated 

in Table 8 the moments as well as Xtip decreased in the order 

Br > I for dimethyl sulfide complexes and Br > CI > I for 

tetrahydrothiophene complexes. Table 9 lists moments which 

have been reported for other known bis-adducts of NbX^. For 

acetonitrile complexes the moments decrease in the order 
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Table 9. Magnetic moments of NbX^L2 complexes 

Complex M<B.M.) ^eff 
(room temp.) 

Ref. 

NbCl4(py)2 1.37 1 

NbBr^(py)g 1.26,1.53 1 

Nbl^(py)2 1.05 1 

NbCl^(ac)2 1.75 12 

NbBr^(ac)2 1.57 12 

Nbl4(ac)2 1.45 12 

NbCl4(Y-pic)2 1.18 28 

NbBr4(Y-pic)2 1.29 28 

NbCl4(bipy) 1.06 28 

NbCl4(0-phen) 1.05 28 

CI > Br > I, while 

found. Br > CI > I 

for pyridine c 

and CI > Br > 

omplexes two orders 

I, where the moment 

are 

of the 

bromide refers to that of the reported red, or green form, 

respectively. A complete series for y-picoline complexes is 

not given, but Heff at room temperature decrease in the order 

Br > CI. If the initial assumption is made that these com­

plexes are octahedral and the effects of spin-orbit coupling 

and a tetragonal component in the ligand field (resulting from 

p 
ligand inequivalences) upon the T2g ground term are consid­

ered, it is found (67) that this level splits into an orbital 

singlet and an orbital doublet level. The effect of these 
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perturbations is depicted diagrammatically in Fig. 8. The 

parameter A is a measure of the splitting in the absence of 

spin-orbit coupling, while spin-orbit coupling alone generates 

a non-magnetic ground state (67). Figgis (66) has shown that 

the larger the low symmetry ligand field the more closely the 

moments approach spin-only values. This indicates that for 

dimethyl sulfide the distortions are greater for X=Br than for 

X=I, while for tetrahydrothiophene the distortions decrease in 

the order NbBr^ (S (^2)4) 2 > NbCl^ (S (^2)4) 2 » Nbl4(S (^2)4) 2 • 

McCarley and Torp (1) concluded from a knowledge of pyridine's 

position in the spectrochemical series (py > CI > Br > I) that 

the observed order of decreasing magnetic moment NbCl4(py)2 > 

NbBr4(py)2 > Nbl4(py)2 the opposite of what would have 

been predicted. From studies of spectra of vanadium(IV) com­

plexes Clark and Errington (37) place thioethers above chlo­

rine in the spectrochemical series. This suggests a similar 

inversion occurs here. This will be discussed further after 

spectral data have been presented. The moment for Nbl4 

(S(CH2)4)2 is ça. 40% lower than expected on the basis of 

moments reported for other iodide complexes (see Table 9). 

This may reflect the loss in weight prior to measurement of 

which inevitably occurred, but for Nbl4(S(CH2)4)2 this 

amounted to only ça. 1% which seems too small to account for 
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the low moment. Far infrared spectra of this complex were con­

sistent with a cis-MX^L2 configuration and showed no evidence 

for unreacted Nbl^. It is also noted that the carbon and 

hydrogen analyses were consistently low by ca. 2%, in spite of 

the fact that the reactions were carried out in extractors 

allowing filtration of the solution and isolation of products 

from unreacted tetrahalide. Even with the low moment for this 

complex X-jip is virtually identical to Xtip for Nbl^ (S (CH3) 2) 2 

and both values are ça. 100% lower than the value of +419 

emu/mole reported for Nbl^(py)2. This anomaly is unresolved 

at this time, but will be considered further after evaluation 

of X, V , and A for the complexes. 

The value of Xtip for the bromide complexes was slightly 

higher than the value +155 emu/mole for NbBr4(py)2(I'ed) but 

lower than the value +225 for NbBr4(py)2(green) (1). Values 

of +189 and +155 emu/mole for NbCl^ (8(0112)4)2 and NbCl4(py)2, 

respectively, are also not significantly different. Tempera­

ture-independent susceptibility is expected to increase as the 

energy separation between ground and excited states of the 

same symmetry decreases. In the one study of niobium(IV) com­

plexes where this was evaluated (1) the Xtip contribution 

increased in the order NbCl4(py)2 < NbBr4(py)2 < Nbl4(py)2 if 
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the lowest of the two values for the bromide is taken. From 

the present results with the dimethyl sulfide complexes this 

order is I < Br and for tetrahydrothiophene complexes I < CI 

< Br. 

Tables 10 and 11 contain a summary of the additional 

magnetic data which were obtained. This includes the values 

of M-eff used in the determination of X, v , and A . 

Table 10. Magnetic susceptibilities and effective magnetic 
moments of NbX^CS(0112)4)2 (X = CI, Br, and I) 

T°K %Mxl0G (%-XD)xlO^ Ueff(B.M.) 

(emu/mole) (emu/mole) 

X=C1 297 550 774 1.36 
182 950 1174 1.31 
154 1131 1355 1.29 
142 1230 1454 1.28 
77 2342 2562 1.26 

X=Br 298 548 842 1.42 
182 963 1257 1.35 
166 1054 1348 1.34 
77 2378 2672 1.28 

X=I 298 -40 312 0.86 
228 0.7 338 0.81 
176 81 438 0.78 
146 140 499 0.76 
128 185 543 0.75 
77 417 775 0.69 
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Table 11. Magnetic susceptibilities and effective magnetic 
moments of NbX^ (S (0113)2)2 ~ Br and I) 

T°K XNXlO^ 

(emu/mole) (emu/mole) 

tieff (B.M.) 

X=Br 298 530 778 1.37 
239 653 901 1.31 
224 709 957 1.31 
183 908 1156 1.30 
139 1203 1451 1.27 
113 1489 1737 1.25 
77 2186 2434 1.22 

X=I 296 370 684 1.27 
243 465 779 1.23 
233 506 820 1.24 
170 756 1070 1.21 
131 1042 1356 1.19 
129 1056 1370 1.19 
113 1208 1522 1.17 
77 1860 2174 1.16 

Some comment is in order concerning the procedure used. The 

curve fitting was done by hand. For a given value of k the 

parameter v was plotted versus tieff- In this manner a family 

of curves, each curve associated with a particular value of 

kT/X, was obtained. A total of four families were obtained 

covering the range k = 0.7-1.0 units in increments of 0.1 

units. Experimental moments were fit to the curves and spin-

orbit coupling constants calculated from knowledge of T (exper­

imental) and kT/X (graph). Table 12 summarizes the range of 

the parameters. While the range for v is not given it is 
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Table 12. Parameters derived from magnetic data 

Compound k v X(cm"l) A(cm"^) 

NbBr4(S(CH3)2)2 1 .0 1. 95 540-•780 1050-•1440 
0, .8 1. 65 500-•600 800-•1000 

NbBr4(S(CH2)4)2 1, .0 2. 25 540--655 1200-•1500 NbBr4(S(CH2)4)2 
0. .8 1. 95 520- 540 1040-•1050 

NbCl4(S(CH2)4)2 1, .0 2. 15 540-•760 1160-•1640 NbCl4(S(CH2)4)2 
0. ,8 1. 83 540-•690 990-•1250 

Nbl4(S(CH3)2)2 1, .0 1. 65 540-900 890-•1480 Nbl4(S(CH3)2)2 
0, ,8 1. 35 500-•700 700-•1000 

Nbl4(S(CH2)4)2 1. ,0 0. 4 540-840 215-•335 

estimated as ça. +0.2 units. It is clear from the table that 

A is positive and the ^2g level splits such that an orbital 

singlet level is lower. The range of A varies for each com­

plex, but it generally has a magnitude of 1000 cm"^. This is 

lower than was reported for acetonitrile complexes (12) where 

A varied from ça. 4500 cm~^ for the chloride to 600-1000 cm"^ 

for the iodide. The spin-orbit coupling constant decreases in 

the order I > Br for dimethyl sulfide and I > CI > Br for 

tetrahydrothiophene complexes. Values of k = 0.8 gave the 

best fit and increasing-or decreasing k by 0.1 unit increased 

the range \ to values considered too high to be reasonable. 

The effect of increasing k by 0.2 units is shown in Table 12. 
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The only decent fit obtained for Nbl4 (8(0112)4) 2 with k = 

1.0 and V = 0.4, and ranges for A and X of 215-315 cm ^ and 

540-840 cm"^, respectively. Lower values of k gave spin-orbit 

coupling constants in excess of the reported free ion value of 

748 cm"^ (68). The low value of k for Nbl4(8(0112)4)2 i™ed-

iately suggests that the compound contains some diamagnetic 

impurity. For A on the order of kT a moderate temperature 

dependence of the moment is expected instead of the observed 

Curie behavior. This diamagnetic impurity is very likely 

niobium(IV) iodide formed during vacuum drying of the sample. 

In order to obtain a check on two of the moments, epr 

measurements were made on NbC 14(8 (0112)4) 2 NbBr4(8 (OH3) 2) 2 

powders. The room temperature resonances were broad having 

halfwidths of ça. 1500-2000 gauss, and none of the expected 

anisotropy was observed. Experimental g-values of 1.72 and 

1.70 for the respective chloride and bromide complexes were 

used in Equation 12 to calculate corresponding M-eff values of 

p. = g->/s(S+l) (12) 

(8 = %) 

1.47 and 1.48 B.M. Each moment was higher than the actual 

moments, but close to the experimental effective moments 

(Table 10 and 11). The measurement on powdered NbOl4 
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(8(0112)4)2 was extended to _ca. -196° where it was hoped that 

some of the expected anisotropy would be observed. Three g-

values were extracted from the spectrum, = 1.83, g2 = 1.81, 

and g3 = 1.72 giving an average g-value of 1.75. From this 

average g-value a moment of 1.54 B.M. was calculated, again 

closer to the value for Ueff than for n. Clark and Errington 

(37) obtained good correlations between M-eff for VCl^B (B = 

CH3SCH2CH2SCH3) as determined from room temperature bulk mag­

netic susceptibility measurements and epr studies. Why values 

of iJ-eff obtained from susceptibility data via Equation 8 should 

agree with from Equation 12 is not clear, since U-eff (exper­

imental) contains contributions from X^ip which, arising from 

the second-order Zeeman effect, are not expected to contribute 

to moments calculated from the g-factor. 

Electronic spectra 

Visible and near infrared spectra of NbX4(S(0112)4)2 (X = 

CI, Br, and I) and NbX4(8(0113)2)2 (X = CI, Br, and I) were 

studied using the techniques described in the experimental 

section. These studies were done with the pure solids and 

solutions (benzene or free ligand). It was the purpose of 

these investigations to determine (1) the relative position 

of alkyl sulfides in the spectrochemical series for niobium(IV) 
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(32), (2) the nature of species in solid and solution phases, 

and (3) the magnitude of ligand field distortions prevailing 

in the complexes. The representative spectra and frequency 

maxima of observed bands are given in Figs. 9-14 and Table 13. 

Table 13. Data from electronic spectra of tetrahalobis 
(alkyl sulfide)niobium(IV) complexes 

Compound Medium U(max) ® 
(cm~l) ( 4.mole"lcm"l) 

NbCl4(S(CH2)4)2 CgHg 9,740 12 
13,300 29 
18,600 194 
27,800 1550 

NbBr4(S(CH2)4)2 11,950 12 
17,500 240 
27,800 -2000 

NbI,(S(CHn),), S(CH2)4 13,700 118 
16,700 1140 
19,300 1530 
21,000 1210 
27,000 2400 

NbBr4(S(CHo)o)o S(CHo)2 11,900 
17,400 
29,000 

Nbl4(S(CH3)2)2 8(^3)2 11,100 
17,400 
20,800(sh) 
22,700 
29,000 
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NbBr4(S(CH2)4)2 

NbCl4 (8(^2)4)2 

NbBr4(S(CH3)2)2 
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I I 
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V (cm"l) 

30,000 

Fig. 9. Diffuse reflectance spectra of tetrahalobis(alkyl 
sulfide)niobivm (IV) complexes 
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. 10. Electronic spectrum of tetrachlorobis(tetrahydrothiophene)niobium(IV) 
in benzene 
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Fig. 12. Electronic spectrum of tetraiodobis(tetrahydrothiophene)niobium(IV) 
in tetrahydrothiophene 
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Fig. 13. Electronic spectrum of tetrabromobis(dimethylsulfide)niobium(IV) 
in dimethyl sulfide 
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Fig. 14. Electronic spectrum of tetraiodobis (ditnethyl sulfide)niobium(IV) 
in dimethyl sulfide 
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The spectra of NbCl4(S (0112)4)2 in the solid state and in 

benzene and tetrahydrothiophene solutions were virtually iden­

tical indicating that the same species was present in each 

phase. Similar results were found for the complex NbBr^ 

(3(0112)4)2 in solutions, but the solid state spectrum did not 

exhibit the band at 11,950 cm"^ found in the solution spectra. 

For Nbl4 (S (0113)2)2 the spectra of solids and tetrahydrothio­

phene solutions were recorded but extremely poor resolution in 

the solid state spectrum rendered it valueless. A similarly 

poor solid state spectrum for Nbl4(S(CH3)2)2 is shown in Fig. 

9. Some band maxima are indicated and correlate roughly with 

solution spectra, but generally the bands are broad and poorly 

defined. For NbBr4(8(0113)2)2 identical spectra were obtained 

from diffuse reflectance measurements and dimethyl sulfide 

solutions. It was concluded that identical species were 

present in each phase. The benzene solution spectrum was 

radically different in one respect. A band was observed at 

6,900 cm"l. This was later attributed to the species 

NbBr4(S (0113)2) and will be discussed in the next section. 

The spectra of cis-NbX4L2 complexes can be discussed 

relative to crystal field theory or molecular orbital theory. 

Torp (12) utilizes molecular orbital theory to rationalize the 
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bonding in NbX^(ac)2 (ac = acetonitrile) complexes. Nonethe­

less, analysis of magnetic susceptibility data using the Figgis 

treatment (66) yields a delocalization parameter k of 0.8. 

Thus delocalization amounts to only 0.2 or 20%. Thus no great 

error is introduced if the spectra are viewed as if the trans­

itions were between pure d-orbitals. Far infrared results 

discussed earlier were consistent with the molecular species 

cis-NbX^L2 of C2v symmetry in the solid state and in solutions. 

If the complexes are initially considered as octahedral the 

effect of a low symmetry (C2v) ligand field component is to 

9 9 
remove the degeneracy of lower T^2g upper Eg levels yield-

9 9 9 
ing, respectively, the resolved triplet ( B2, and A2) 

9 9 
and the doublet (a and b A^). Here a and b coefficients 

O 
are used to distinguish the two A^ terms. Unfortunately it 

is not possible in this case to determine which of the three 

terms arising from the T2g term lies at lowest energy. In 

addition, as many as four absorption bands resulting from 

transitions between the ground level and the remaining four 

levels are expected and in no case are four bands observed. 

Ballhausen (69) has shown, at least qualitatively, that 

the spectra of both cis-MX^L2 and trans-MX^L2 molecular com­

plexes can be discussed as tetragonally (D^^) perturbed com­
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plexes. The effect of a tetragonal component in the ligand 

field upon terms arising in 0^ is depicted diagramraatically in 

Fig. 15. Here the ^T2g level is resolved into ^B2g and ^Eg 

o 9 9 
levels, and the excited Eg level yields B^g and A^g. The 

analogy to Fig. 8 where the effect of an axial component upon 

a T2g term is depicted is not fortuitous. The magnetic 

2 moments of these complexes indicate, that the B^g level lies 

9 — 1 
at lower energy, separated from Eg by ca. 1000 cm" . Elec­

tronic spectra measurements were not extended to this low an 

energy, hence, only two ligand field bands are expected and 

they should appear in the visible region. Treating these cis 

complexes as if they exhibited symmetry the observed trans­

itions will be from the ground ^B2g level to the excited ^A^g 

and B^g levels. Which of these two levels lie at lower 

energy is not known. Yamatera (70) and McClure (71) have 

shown for Co(III) complexes that the magnitude of the split­

ting of this upper level, 6(^Eg) will be a function of the 

parameters fie and 6tt which reflect differences in effective 

field strengths for a-bonding and n-bonding as ligands denoted 

by L are substituted for A in a CoX^ (q = + (1-3)) complex. As 

of this writing this theory has not been extended to d^ 

systems. The results from the spectra are summarized in 
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Table 14. 

Table 14. Parameters derived from electronic spectra 

Compound 
Assignments 
(2B2g-2Eg) 

U(cm"l) A (cm'l) 

6 (2Eg) 

(cm~l) 

NbCl4(S(CH2)4)2 18,600 18,600 5,300 
13,300 

NbBr4(S(CH2)4)2 17,500 17,500 5,550 NbBr4(S(CH2)4)2 
11,950 

Nbl4(S(CH2)4)2 13,700 (16,700) (3,000) Nbl4(S(CH2)4)2 
(16,700) 

NbBr4(S (CH3)2)2 17,400 17,400 5,500 
11,900 

Nbl4(S(CH3)2)2 (17,400) (17,400) (6,300) Nbl4(S(CH3)2)2 
11,100 

( ) denotes uncertainty in assignment as d-d band 
or uncertainty in derived parameter. 

The parameter A, which is related to 10 dQ in an octa­

hedral complex, was taken to be the energy of the highest 

energy d-d band observed in the spectra. For all the com­

plexes the extinction coefficient for this band is slightly 

greater than is expected for a purely d-d transition. This 

reflects in part the inadequacy of the assumption that purely 

d-orbitals can be used rather than molecular orbitals consist­

ing of a linear combination of metal d and ligand s and p~ ' 
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orbitals, and in part the breakdown via a vibrational-elec-

tronic interaction of the gerade-character of ground or 

excited levels involved in the transitions. The intensity of 

this higher energy d-d band decreases in the order I > Br > CI 

for the present systems. With the iodides the intensity is 

already sufficiently high as to render very uncertain its 

assignment as a d-d band. From data reported for other 

NbX^L2 (L = monodentate ligand) or NbX4B (B = bidentate ligand) 

complexes and the present data an order of ligand field 

strength CH3CN > CgHx5N2 > CI > (0113)28 ~ > Br > I was 

found. The validity of Jorgensen's rule of average environ­

ment (72) was assumed. Only a few other spectrophotometric 

studies of complexes of sulfur ligands have been reported, 

hence, the position of sulfur ligands in the spectrochemical 

series is uncertain (14). Clark and Errington (37) studied 

the spectrum of VCl4(CH3SCH2-)2 and place this sulfur ligand 

2_ 
above chlorine. A value of 10 Dq for VC1^~ was obtained by 

them from the value 7900 cm"^ known for VCI4 and 9/4 relation­

ship between octahedral and tetrahedral complexes. In addi­

tion, the sulfur ligands S^" and (CH3CH20)2PS2 reportedly lie 

above chloride ion (72). 

Values of ~5000 cm"^ were found for 6(^Eg) for all 
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complexes except Nbl4(S(CH2)4)2- Here a low energy band 

appearing at 13,700 cm"^ led to a value 3,000 ctn"^ for 6 (^Eg) 

which contrasts with expected value of 5,600 cni~^ found for 

Nbl^CS(0113)2)2» This band at 13,700 cm"^ is attributed to an 

impurity, very likely diamagnetic, in the compound. The 

magnitude of 6(^Eg) is considerably larger than the value 

1000 cm'l found for 6(^Eg - ^ggg) from magnetic studies, but 

the values of 6(^Eg) and Ô(^Eg - ^B2g) are virtually unchanged 

from one complex to another. 

9 9 
The small value of 6(Eg - B2g) from the magnetic studies 

indicates small deviation from 0^ symmetry. It is then ex­

pected that this would be reflected in a similarity in 

2 9. 
6( Eg) for NbXg and NbX4L2 (L = monodentate sulfur ligand). 

2 -  2 -
For salts of NbClg and NbBr^ this splitting amounts to ça. 

5000 cm"^ (12) . In the hexahalocomplexes this large splitting 

was attributed to Jahn-Teller distortions since x-ray powder 

diffraction studies, at least of K2NbCl6, showed that Nb(IV) 

occupies a lattice site having Oj^ symmetry (12) . For aceto-

nitrile complexes the ^Eg splittings were 3,000, ~5,600, and 

4,300 cm'l for the chloride, bromide, and iodide, respectively, 

while splitting of the ^T2g level decreased from 4600 for the 

chloride to 600-1000 for the iodide. Clearly no correlation of 
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6 (^Eg) and 6(2Eg - Zggg) is evident. Clark and Errington (37) 

took 6(^Eg) as a measure of the deviation of the ligand field 

from octahedral symmetry. For vanadium(IV) chloride complexes 

the splitting decreased in the order R3N > R2O > R2S which was 

the same order in which the ligands occurred in the spectro-

chemical series. Their observation must have been a special 

case since here 6(^Eg) decreased in the order I > Br for di­

methyl sulfide complexes and Br > CI for tetrahydrothiophene 

complexes, the opposite of the ordering in the spectrochemical 

series. Clark et (73) earlier had noted that it was not 

possible theoretically to correlate distortions in the ground 

and excited states of complexes TiCl^Lg. 

In the spectrum of NbCl4(S(CH2)4)2 an additional weak 

band in the near infrared region at 9,740 cm"^ is thought to 

be due to an impurity in the complex. No bands were observed 

at this energy or lower energy for any of the other complexes. 

Considering the previous discussion of this material a small 

amount of some other complex of NbCl^ and S(CH2)4 is the 

likely contaminant (see page 35). 

Generally the data from the visible spectra support the 

magnetic results. The position of the alkyl sulfides between 

chloride and bromide ions in the spectrochemical series is 
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"X 2 2 
consistent with the low values, ça. 1000 cm , for 6( Eg- B2g). 

This separation in spectra of MX^L2 complexes, when L is near 

X in the spectrochemical series, is not expected to be large 

(72). 

Complexes of the Form MX^L 

Some properties as well as the synthesis of the complexes 

NbX^L (X = CI and Br; L = (CH3)2S and (CH3CH2)2S) have been 

presented in earlier sections. These are discussed separately 

since their physical properties, not unexpectedly, differ 

fundamentally in several respects from those of NbX^L2 com­

plexes . The most desirable data for these complexes was their 

molecular weights, and using the techniques described in the 

experimental section a value of 595 + 100 was obtained for 

NbBr^(S(CH2)2)• This was not accomplished in an unambiguous 

manner since some apparent decomposition occurred in the dilute 

benzene solutions. Figure 16 shows the calibration curve for 

the study and the calculated molecular weight for a dimer was 

949 g-mole'^ and for a five coordinate monomer, 474 g-mole"^. 

The experimental value was more consistent with a monomer, but 

with the uncertainty a value intermediate between monomer and 

dimer was not precluded. 
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Fig. 16. Calibration curve for molecular weight determination in benzene 
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Using the procedure described in the analytical section 

an oxidation number of 4.01 + 0.01 was established for niobium 

in NbCl^(S(CH2CH3)2). Other properties of this and other com­

plexes were also consistent with the presence of niobium(IV) 

and have been discussed earlier. 

Data were also obtained using the physical methods applied 

to NbX4L2 complexes. Initially the magnetic properties were 

investigated, and this was followed by far-infrared and elec­

tronic spectral measurements on solids and solutions. These 

data and results will now be presented in that order. 

Magnetic susceptibilities 

Measurements of magnetic susceptibilities were made using 

techniques presented in the experimental section. The results 

are summarized in Table 15. All four compounds were diamag-

netic with a very small amount of paramagnetic impurity con­

taminating NbBr^(S(CH3)2). For the latter compound a plot of 

% vs T'^ shown in Fig. 7 was linear and a moment of 0.028 B.M. 

was obtained from the slope of the curve. 

Since a single measurement of molecular weight for NbBr^ 

(S(CH3)2) in benzene established the presence of monomer in 

this solvent, the esr spectra of benzene solutions of NbBr^ 

(8(0113)2) and of NbCl4(S(CH2CH3)2) were investigated at room 
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Table 15. Magnetic susceptibilities for tetrahalo(dialkyl 
sulfide)niobium(IV) complexes 

NbCl4(S(CH3)2) 

Xm-10^ 
T°K (emu/ 

mole) 

297 -80 
236 -80 
190 -80 
163 -75 
133 -78 
83 -77 
77 -76 

NbBr4(S (CH3)2) 

XM-10^ 
T°K (emu/ 

mole) 

299 -67 
195 -40 
162 -25 
148 -13 
77 78 

NbCl4 
(S(CH2CH3)2) 

XM'IO* 
T°K (emu/ 

mole) 

298 -83 
177 -56 
77 -39 

NbBr4 
(S(CH2CH3)2) 

XM'IO* 
r°K (emu/ 

mole) 

297 -555 
77 -111 

temperature. No resonance was detectable. This is indicative 

of the absence of a paramagnetic specie or the esr lines are 

too broad at room temperature to be detectable. In the case 

of NbCl4 (S (CH20113)2) nmr spectra of benzene solutions were re­

corded using a low resolution and a high resolution nmr spec­

trometer. The result of these experiments was inconclusive. 

The diamagnetic behavior of the solid complexes NbX4L 

contrasts with reported anti-ferromagnetic behavior of TiCl3L2 

(L = S(0113)2 and 8(0112)4) (43) as well as the slightly anti-

ferromagnetic behavior of 1^X31,2 (X = Br and I) . Fowles (43) 

proposed a direct titanium-titanium bond in a dimeric species 

for TiCl3L2, and for the bromide and iodide bioctahedral 

halogen bridged dimers were suggested. Diamagnetic complexes 
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of niobium(IV) have previously been reported by Wentworth and 

Brubaker (25) and by Brown and Newton (32). A molecular weight 

measurement established a dimer for (NbCl(OCH2CH3)3py)j^ (n = 

2), and it was assumed that the chloride ions were bridging 

groups across a metal-metal bond. The virtual insolubility of 

diamagnetic NbCl4N(CH2CH3)3 (32) in all solvents tried pre­

cluded measurement of a molecular weight, but other properties 

suggested its formulation as a metal-metal bonded chlorine-

bridged dimer. Analogous behavior of the present complexes 

suggests that dimeric metal-metal bonded structures with two 

halide bridges are present in the solid state. In benzene 

solution molecular weight data suggests that the bridge Nb-X 

bonds are cleaved to yield five-coordinate complexes or com­

plexes of the form (NbX^L-solvent). 

Far infrared spectra 

Far infrared spectra of dimethyl and diethyl sulfide, 

solid complexes, and solutions of the complexes were recorded 

using procedures described in the Experimental section. The 

spectrum of diethyl sulfide consisted of four bands with maxi­

ma located at frequencies (rel. int.): 380(m), 342(m), 305 

(w-m), and 245(w,br). The bands at 305 to 380 cm"^ hinder 

interpretation of spectra of diethyl sulfide solutions. A 
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similar complication arises for benzene solution since bands 

due to the solvent appear at 400(m), and 300(s) cm 

Spectra of solid complexes are presented in Figs. 17 and 

18 and band maxima are tabulated in Table 16. There is a 

strong similarity between the solid state spectra of mono-

adducts and bis-adducts (see Fig. 3) which is consistent with 

the same local symmetry for niobium(IV) in the two cases. The 

position of the highest energy Nb-X stretching band, taken as 

an index to coordination number of the metal (45), is consis­

tent with the same coordination number of six for each complex. 

Far infrared data for the MX4L2 complexes with M = Nb were 

consistent with a cis-stereochemistry (C2v), and indicated 

from the assignment of metal-sulfur and the lowest energy 

metal-halogen stretching frequencies that the force constants 

for these two types of fundamental modes are quite similar. 

To the extent that these assignments are valid it suggests that 

in a first approximation the bioctahedral halogen-bridged 

dimers can be considered as having pseudo-D2h symmetry. For 

such a model a total of six infrared active Nb-X or Nb-L 

stretching bands are anticipated transforming according to the 

representations 28]^^ + 332^ + 63^ of the point group D2h- ^ 

formal similarity between the far infrared spectrum of such a 
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17. Far infrared spectra of NbCl^L in benzene solutions 
and nujol mulls (N) 



www.manaraa.com

94 

•h 

I •I 
500 400 300 200 100 0 

V (cm'l) 

Fig. 18. Far infrared spectra of NbBr^L (L = (CH3)2S and 
(CH3CH2)2S) (nujol) 
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Table 16. Far infrared spectra of tetrahalo(dialkyl sulfide)niobium(IV) complexes 
( i>in cm'l) 

NbCl4(S (CH3)2) NbCl4(S(CH3CH3)2 
NbBr4 

(S(CH3)2) 
NbBr4 

(S(CH2CH3)2) 
(Nujol) (C6H6) (Nujol) (CôHô) (Nujol) (Nujol) 

396 (m,sh) 393(m) 382(m) 391(s) 305 (m) 303(m,sh) 
375(s) 371(s) 360(s) 367(s) 283(m) 282 (s) 
340(m) 346 (m) 340 (tn) 341(s) 271(s) 270(s) 
307(m) 318 (w) 310 (wm) 316(m,sh) 254 (m) 250(m) 

300 (w) 300(w,sh) 
276 (w,sh) 280 (w) 280(w,sh) 280(vw) 227(m) 227(m) 
250 250(vw) 252 (w) 250(w) 195(m) 18 9 (m) 

166 (w) 162(w) 160(w) 156 (w) 
155(w,sh) 150 (w) 110(w,sh) 110(w) 
148(w) 98 (w) 92 (w) 
13 2 (w) 132(w) 73 (w) 
188(w) 108(w) 
78 (w) 

(NbCl4(S(CH3)2) in S(CH3)2: 368(m,sh] 1, 348(s,br), 

U
 

00 <N 

235(w-m).' 

vo 
Ln 
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dimer and cis-NbX£^L2 (where six M-X and M-S stretching bands 

are also expected) is then not unexpected. Similar conclusions 

follow from a comparison of reported far infrared spectra of 

PdCl2(5(0113)2)2 (74) and Pd2Cl4(S(CH3)2)2 (75) where, respec­

tively, the bands from 400-200 cm""^ appear at 361(vs), 322(w) , 

310(m), 303 (s), 295(m), 282(vw), and 220(m) cm"^, and 360(vs), 

340(m), 308(m), 304(sh), 283(ms), and 208(w) cm"^. Beattie and 

Webster (48) also noted the expected similarity between the 

spectrum of the halogen bridged dimer Nb2Cl2Q and complexes of 

the form cis-MX^L2' 

No further attempt at assignment of the bands is made 

here. Clearly a normal coordinate analysis would be required 

to separate bands due to U (Nb-X)^, ^(Nb-X)^, and t;(Nb-S) 

since all seem to lie in the same narrow frequency range and 

the possibility of considerable mixing must be considered. 

Even for NbX4L2 complexes the assignments of f(Nb-S) stretch­

ing modes were tentative. 

Spectra of NbCl^L (L = 8(0113)2 and 8(01120113)2) were also 

recorded in benzene solution, and for L = 8(0113)2 the spectrum 

in dimethyl sulfide was recorded. For the latter ligand bands 

were not expected to interfere with interpretation since 

dimethyl sulfide spectra exhibited only a broad weak band at 
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ça. 282 cm"l. The data are recorded in Table 16 where differ­

ences are at once apparent. The band at ça. 395 cm~^ in the 

spectrum of solid NbCl^ (8(0113)2) is absent in the dimethyl 

sulfide solution spectrum. In addition the band at 250 cin"^ 

in the solid is absent in the solution spectrum and a band at 

235 cm"l appears. The similarity of this spectrum of NbCl^ 

(3(^3)2) in dimethyl sulfide to that of NbCl^(8(0112)4)2 in 

tetrahydrothiophene is consistent with the presence of six 

coordinate NbCl^(S(CH3)2)2 in dimethyl sulfide solutions. In 

benzene solution spectra of the chloride monoadducts the band 

at ça. 395 cm"^ is again found, in addition in the 300 cm~^ 

region two bands are observed at ça. 320 and 300 cm"^ instead 

of the one band at ça. 310 cm~^ observed in solid state spec­

tra. This is very likely due to complications arising from 

the appearance of solvent bands, in this case benzene, at 400 

and 300 cm~^. The 310 cm"^ band in solid state spectra is 

shifted to ~320 cm~^ in solution spectra and the weak 300 cm"^ 

is probably due to benzene absorption. The relative intensity 

of the band at ça. 395 cm"^ in the benzene solution spectra 

suggests that it is not due entirely to solvent but instead is 

coincident with an Nb-Cl stretching band. This similarity 

between solution and solid state spectra then suggests that 
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the same species are present in both phases, yet other data 

imply that possible five coordinate species are present in 

benzene solutions. Clark (45) observed that the frequency of 

the highest energy Ti-Cl vibration was a function of the coor­

dination number of titanium decreasing from 490 cm~^ for 

tetrahedral TiCl4 to ~380 cm"^ for six-coordinate TiCl^-ZL to 

317 cm"l for eight-coordinate 7101^20 (D = o-phenylenebis-

diarsine) . For TiCl^ (8(0112)4)2 in tetrahydrothiophene the 

highest energy TiCl band appeared at ça. 373 cm"^ while for 

five coordinate TiCl3(N(CH3)3)2 this band occurs at 387 cm"^. 

The expected increase in energy of U(Ti-Cl) with decrease in 

coordination number is then much sharper on going from 8-to 6-

coordination or 6-to-4-coordination than from 6-to-5-coordina-

tion. It is not unreasonable then to expect the far infrared 

frequencies of a five-coordinate MX4L complex to be similar in 

the M-X stretching region to that of a halogen bridged dimer 

whose M-X stretching force constants are much lower than those 

of the nonbridging M-X bonds. 

As suggested by the preceding discussion there is clearly 

a need for additional study via Raman spectroscopy, and normal 

coordinate analysis. Ultimately a structure investigation 

using the techniques of single crystal x-ray diffraction 
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analysis will be required. The data here has been discussed 

from various points of view, but with the great constraint of 

virtual identity of solid and solution phase spectra of mono-

adducts, and solid state spectra of the bis-adducts NbX4L2. 

Still the conclusions are at best tentative. 

Electronic spectra 

Electronic spectra were recorded for solids and solutions 

using procedures described in the experimental section. Spec­

tra are reproduced in Figs. 19 and 20 and Table 17 contains 

data o tained from the spectra. With the instrumentation 

available it was not possible to extend the diffuse reflec­

tance measurements on solids to energies less than ça. 10,000 

cm~^. Mull spectra obtained for NbCl4(R2S) (R = CH3 and 

CH3CH2) using a Gary Model 14 spectrophotometer extended the 

measurements to 6,250 cm"^, but the poor spectra each exhibited 

only a broad featureless band with a maximum at 330 mn . Dif­

fuse reflectance spectra of (NbCl(OCH2CH3)3(C3H5N))2 (25) and 

NbCl4(N(01120113)3) (32) consist of a shoulder on a charge trans­

fer band at 27,400 and 26,300 cm~^, respectively. A single 

broad band at 25,800 cm"^ has also been reported for the solid 

state spectrum of NbCl^ (32). The appearance of lower energy 

bands in solid state spectra of NbX4(SR2) is not inconsistent 
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Table 17. Extinction coefficients and band maxima for com­
plexes of the form NbX^L (X = CI and Br; L = 
(CH3)2S and (CH3CH2)2S 

NbCl4(S(CH2CH3)2) NbBr^(S(CH2CH3)2 

L»(cm"^) e(i. mole"^cm'^) t>(cm'^) e(4. mole"^cm~^) 

34,360 14.6x10^ 
26,310 27x10% 
18,350 126 17,400 150 
12,900 35 11,630 12 
8,300 47 6,900 79 

NbCl4(S(CH2CH3)2) in C6H12: 43,478; 34,402; 26,667; 18,600; 
12,100; and 8,000 cm"l 

NbBr4(S(CH3)2)2 in CgH^: 17,400; 11,630; and 6,900 cm"^ 

NbCl4(S(CH3)2) in C5H5: 18,360; 12,900; and 8,300 cm"^ 

with those findings since it has been shown in an earlier sec­

tion that Dq for alkyl sulfides ligands is lower than for 

nitrogen donors and chlorides, hence lower energy ligand field 

bands for these complexes are not unexpected. The spectra of 

NbX4(SR2) solids and solutions are sufficiently similar above 

10,000 cm~^ as to suggest the presence of similar species in 

these phases. At energies lower than 10,000 cm"^ spectra of 

benzene solutions exhibit bands at 8,300 cm"^ for the chloride 

and 6,900 cm~^ for the bromide complexes. It is these low 

energy bands which were not observed in diffuse reflectance 

or nujol mull spectra. 
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Fig. 19. Diffuse reflectance spectra of tetrahalo(alkyl sulfide)niobium(IV) 
complexes 
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. 20a. Electronic spectrum of tetrachloro(diethyl sulfide)niobium(IV) 
in benzene 
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Fig. 20b. Electronic spectrum of tetrabromo(diethyl sulfide)niobium(IV) 
in benzene 
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The bonding in a dimeric metal-metal bonded complex such 

as has been described is not expected to differ significantly 

from the qualitative molecular orbital interpretation of the 

bonding in a-Nbl^ given by Dahl and Wampler. Octahedral sym­

metry about each niobium atom was assumed and the , 

4dj^2_y2, 5s, 5px, 5py, and 5p^ orbitals were used in a-bonding. 

The 4dxz and 4dyz pair was used in n-bonding with suitably 

oriented filled n-orbitals on iodine atoms. This left a d^y 

orbital to contain an unpaired electron. Overlap between half-

filled dxy orbitals on adjacent niobium atoms accounted for 

the diamagnetism of the compound. Bands appearing in the 

electronic spectrum then arise via transitions to excited 

levels from a filled (d^y)^ orbital. Such a model is appli­

cable to the dimers discussed here and accounts qualitatively 

for their observed magnetism and electronic spectra. Alter­

natively a mechanism which does not involve metal-metal bond­

ing by direct overlap of d-orbitals, but which involves spin-

coupling between chlorine-bridged niobium atoms via localized 

super-exchange can account for the magnetic behavior (43). 

However, no evidence for antiferromagnetic behavior was found, 

and would have been expected for such a mechanism. 

Rationalization of the bonding in the solution species is 
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more difficult since it is not certain whether a single species 

rather than a dimer plus its dissociation product, a five coor­

dination monomer, is present. The appearance of the bands at 

low energy in the electronic spectra of solutions, the molecu­

lar weight of NbBr^(S(CH3)2), and the empirical composition all 

suggested that a five coordinate monomer was present. A 

spectrum of NbCl^(S(CH2CH3)2) in cyclohexane solution was 

recorded in order to ascertain whether the band at 8,300 cm ^ 

was solvent dependent. As shown in Table 17 benzene and cyclo­

hexane solution spectra were virtually identical. The spectra 

will now be discussed. Initially a trigonal bipyramidal (Dg^) 

model will be assumed. 

Ciampolini (76), Allen and Hush (77), Day (78), and more 

recently Wood (47) have applied crystal field and/or ligand 

field theory to trigonal bipyramidal complexes having Dgh 

symmetry. The results were used to assign bands in the elec­

tronic spectra of a variety of complexes of the MX5 or MX3L2 

where X is a halide and L is a unidentate ligand. Allen and 

Hush (77) reported bands at _ca. 8,500 and 10,000 cm~^ for 

CoCl5^" which were assigned as transitions from ^A^ level to 

the levels ' and ^E". These levels result from a trigonal 

bipyramidal crystal field splitting of the d-manifold (79). 
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Wood (47) evaluated the one electron matrix elements within 

the d-manifold in terms of the tetragonality parameters Dg and 

Dt and obtained the orbital energies: (z^), a|, 2Dg+6D^.; 

(xz,yz),e",Dg-4Dt; and (xy,x2-y2) ̂e',-2Dg+Dt-. The predicted 

transitions are then ^E" (10 Dt+ Ds) and -•^e' (-3 Dg 

+5Dj.) . (For a d ' sys tem the level sequence is inverted rela­

tive to d^.) Using the values of D^ and Dg derived by Wood 

(47) for 7013(8(0113)2)2 and VBr3 (8(0113)2)2 the predicted 

energies of the expected transitions for the present system 

are as shown in Table 18. For chloride and bromide complexes 

Table 18. Ligand field spectra and parameters for five 
coordinate complexes ( Uin cm"!) 

NbCl4(S(0H3CH3)2) NbBr4(S(CH2CH3)2) 

Dg (theory) -100 150 

Dt (theory) 1,260 1,285 

(2gii-2^j^) (theory) 12,300 13,000 

(2e"-2e')(theory) 6,400 5,975 

Dg(est.) -520 -310 

Dt(est.) 1,340 1,194 

(2e"-»2^^) (exp) 12,900 11,630 

(2e"-2e') (exp) 8,300 6,900 

(est. denotes estimated using experimental spectra, and theory 
denotes estimated using Df- and Dg from VX3(R2S)2) 
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the predicted energy for the ^E" -* ^A* transition is fairly 

well approximated using the parameters for the vanadium com­

pounds, while for the ^E" -* ^E' there is greater disparity. 

New estimates of the parameters are given in Table 18 and are, 

for the sign convention used by Wood (47), indicative of an 

overall increase in the tetragonality of the ligand field. 

This is not unexpected since, like Dq, and Dg are expected 

to increase on passing from a first to a second row transition 

element. 

From this simple analysis a five coordinate trigonal bi-

pyramidal complex can account for the spectrum. Some other 

species, presumably a dimer, account for the high energy bands 

at ça. 18,600 and 17,400 cm~^ for the chloride and bromide. 

These results are by no means conclusive, but they are 

indicative of the formation of three types of complexes by 

niobium(IV) halides and unidentate alkyl sulfides. Paramag­

netic cis-NbX^L2 species form in the presence of excess 

dimethyl sulfide and tetrahydrothiophene. With NbX^ (8(0113)2) 2 

(X = CI and Br) in benzene dissociation occurs to form five 

coordinate complexes and dimers as evidenced by the presence 

of a high energy ligand field band at 17,000-19,000 cm"^, and 

a low energy ligand field band at 7,000-8,000 cm Evapora-
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tion of benzene yields diamagnetic solids which exhibit bands 

in diffuse reflectance spectra which are similar to what is 

observed with cis-MX4L2 monomers. Spectra of NbBr^CS(0113)2)2 

in benzene exhibit the expected ligand field band at 6,900 

cm"l, while NbBr^(8(0113)2) in dimethyl sulfide exhibits a 

spectrum virtually identical to that of NbBr4(S(CH3)2)2 in 

that solvent. 

In contrast the spectrum of NbBr^ (8(0112)4) 2 in benzene or 

tetrahydrothiophene is the same. Diethyl sulfide forms only 

the monoadduct with NbX^ (X = 01 and Br) and its spectra are 

virtually identical to those of the corresponding dimethyl 

sulfide complexes. The similarity between the electronic 

spectra of solid NbX^L and NbX4L2 complexes suggests that 

formation of a metal-metal bond does not significantly alter 

the cT-bonding levels of niobium. This one point is perhaps 

most interesting of all since such changes might have been 

predicted, and if not in cr-bonding levels then in n-bonding 

levels (79,80). 

Oomplexes of the Form MX4B2 

The preparation and some of the properties of the com­

plexes MX4B2 (M = Nb, Zr; X = 01, Br, and I) have been dis­

cussed in the Experimental section. At this point other data 
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from physicochemical studies of the solids will be presented. 

Initially infrared and far infrared data will be discussed and 

this will be followed by a discussion of magnetic suscepti­

bility data and diffuse reflectance spectra. 

Infrared spectra 

Several workers have investigated the spectrum of 2,5-

dithiahexane (38-40) and assigned the bands observed. In the 

most recent study by Hayashi et al. (40) vibrational assign­

ments were made in relation to rotational isomerism. A total 

of ten different rotational isomers are possible. Discounting 

rotation about C-S bonds only three rotational isomers or 

conformers are possible, the trans-, cis-, and gauche con-

formers . Studies of spectra (40) and other physical measure­

ments (81) on the pure liquid and solid have established that 

in the liquid state trans and gauche forms are present, while 

in the solid state only the trans form is found. Similar 

behavior is found for other 1,2-substituted ethane derivatives 

(81). Mizushima et (82) , Quagliano et al. (82) and Sweeney 

et al. (84) determined the conformation of 1,2-dithiocyanato-

ethane and 2,5-dithiahexane in metal complexes and established 

it as gauche. More recently Clark and Errington (37) estab­

lished the gauche conformer of 2,5-dithiahexane in the com-
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Table 19. Observed frequencies (in cm'^) of 2,5-dithiahexane (dth) in free and 
coordinated states 

Assignment Liq. dth NbCl4(dth)2 ZrCl4(dth)i NbBr^(dth)2 

CH2wag (T,G) 1281(sh) - - - - - -

CH2wag (G) 1268(s) 1260 (tn) 1267(m),1263(sh) 1257(w) 

CH2wag(T) 1208(s) - - — — — — 

CH2twist (G) 1200(sh) 1182,1170 (id) 1181(m) 1182(m),1164(tn) 

CH2twist (G) 1130(sh) 1142 (tn) - - 1139 (tn) 

CCstr (T,G) 1030(w) 1029,1023(s) 1032 (tn) 1031(sh),1021(s) 

CH3rock(T,G) 972(sh) 975(w) ,975(sh) 982 (w) 982 (w) 

CH2rock (G) and 

CH^rock (T,G) 960(s) 956(s) 962 (tn) 960 (s) 

CH2rock(G) 840 (w) 843 (m) ,834 (in) 843(m) 840(m),831(m) 

CSstr (T) 739(s) - - — — - -

CSstr (T) 688 (s) — — — — — — 

CSstr (T,G) 655(vw) 644(w),640(w) 650(w) 640 (w) ,636(w) 
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plexes TiCl4(dth), TiBr^Cdth), VCl^Cdth), SnCl4(dth) , and 

Nil2(dth)2. 

Table 19 contains absorption maxima in the spectra of the 

2,5-dithiahexane complexes as well as the vibrational spectrum 

and assignments of the free ligand. Bands of moderate to 

strong intensity which are characteristic of the trans con-

former appear at 1208 and 688 cm ^ in the solution spectrum of 

the free ligand, but are completely absent in the spectra of 

the complexes. For the gauche conformer those bands at 655, 

840, and 1268 cm"^ in the free ligand reappear in the spectrum 

of the complexes, and for the weak bands, with increased in­

tensity. These data then suggest that the ligand 2,5-dithia-

hexane is coordinated in the gauche form. The multiplicity of 

most of the bands is too complex to be associated merely with 

a lowering of the symmetry of the ligand, but probably also is 

due to the presence in the coordination sphere of two gauche-

forms (39) . 

Far infrared spectra 

Results of far infrared studies are represented diagram-

matically in Fig. 21 and Table 20. The free ligand spectrum 

was also studied in this region and band maxima occurred at 

V (rel. int.): 550(w), 510(w,sh), 415(w), and 220(m) cm"^. 
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Fig. 21, Far infrared spectra of NbX^(dth)2 (X = CI, Br, 

and I) and ZrCl4(dth)2 (nujol mulls) 
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Table 20. Vibrational frequencies and some assignments for 
tetrahalobis(2,5-dithiahexane)niobium(IV) complexes 
( V in cm'l) 

NbX4((CH3SCH2-)2)2 

Assignment X = CI X = Br X = I ZrCl4 
((CH3SCH2-)2)2 

i»(M-X) 310(s,sh) 245(s,sh) 165 (m) 
303(s) 235(s) 142(m) 300 (s) 

U(M-S) 281(s) 278(m) 276(m) 
260(w) 261 (m) 254(ms) 275(ms) 

Unassigned 245(w) 194 (w, sh) 230(w-m) 230 (w-m) 
bands 235 (w) 185 (w) 213 (m) 202(w-m) 

207(w) 164 (m) 123(w,sh) 175(m) 
193 (w) 135 (w) 108 (m) 137(wm) 
180(w) 118(m) 63 (w-m) 80 (m) 
119 (w) 113(m,ph) 59 (w-m) 
97 (m) 93 (m) 
8 Km) 72 (m) 

(NbCl4( CH3SCH2-)2): 460(w), 440(w), 370(s,sh), 355(s), 
336(s), 320(s,sh), 280(s), 260(w), 
23 7 (w), 130 (w).) 

Hayashi (40) calculated vibrational—frequencies of skeletal 

modes appearing below 500 cm"^ for six of ten rotational iso­

mers . The present data are most consistent with the TTT 

conformer where the left hand T refers to conformation about 

one C-S bond, the center symbol to conformation about the C-C 

bond, and the right hand symbol to the conformation about the 

remaining C-S bond. Clearly this is consistent with the trans 

form (about C-C bond) predominating in solution. 
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The far infrared spectra of the complexes are quite rich 

with all of the bands appearing at ça. 300 cm"^ and below. 

Particularly for the chlorides this is relevant, since for six 

coordinate niobium(IV) chloride as well as zirconium(IV) chlo­

ride complexes the metal-chlorine stretching bands center at 

ça. 350-360 cm~^. An intense band with a shoulder at 310 cm"^ 

is found at 303 cm"^ in the NbCl^(dth)2 spectrum and at 305 

cm'^ in the spectrum of ZrCl4(dth)2. This represents a shift 

to lower energy for M-Cl of ça. 40-50 cm"^. Clark (45) asso­

ciates such shifts with increase in the coordination number of 

the central metal. Shifts of this magnitude were referred to 

earlier for six and eight coordinate complexes of TiCl^. 

X-ray diffraction data for representative TiCl4L2 or TiCl^ 

(diarsine)2 (ophenylenebisdimethylarsine) complexes indicated 

a correlative increase in Ti-Cl distance with decrease in 

V (Ti-Cl). Clark (45) also reports U(M-C1) for the authentic 

eight-coordinate ZrCl4(diarsine)2 and NbCl4(diarsine)2 as 

295(s) and 303(sh) cm"^ and 299(s) and 307(sh) cm"^, respec­

tively. The present data thus are consistent with eight-

coordination about the metals. Corresponding stretching bands 

for bromide and iodide are expected at ça. 235 and 170 cm~^, 

respectively, if the ratios U(NbBr)/ U(Nb-Cl) = 0.76 and 
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and i>(NbI)/ i>(NbCl) = 0.56 derived from reported six coordin­

ate complexes are used in their estimation. Experimentally in 

the spectrum of the bromide a strong doublet appears at 235 

and 245 cm"^ and for the iodide similarly strong bands appear 

at 165 and 142 cm'^. These bands are then assigned as U(Nb-

Br) and i;(Nb-I) and relative to six coordinate complexes are 

shifted to lower energy by c^. 30-40 cm"^. The doublet struc­

ture of these stretching bands (except for ZrCl4(dth)2) and 

their similarity to i/(M-Cl) in analogous eight coordinate 

diarsine complexes suggests that the same molecular symmetry 

prevails in each. Those diarsine complexes which have been 

discussed are known to have local symmetry D2d with the metal 

atom in the center of a dodecahedron (30). A model is depicted 

in Fig. 22. With the sulfur ligands occupying positions A and 

the halides positions B, and considering the ligands as point 

dipoles, the full D2(j symmetry of the dodecahedron is pre­

served. It is in fact this manner in which these positions 

are occupied in most known MX4(diars)2 complexes (30). Simple 

group theoretical methods reveal that nine infrared active 

normal vibrations are allowed. These transform according to 

the reduced representation F = 4B2 + 5E. If it is assumed 

that there is negligible interaction between modes of the same 
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Eight coordinate metal complex MA4B4 having D2d 

symmetry 
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symmetry these can be further broken down. Thus, two M-X 

stretching modes transforming as B2 + E and two M-S modes 

transforming similarly as B2 + E are predicted. A cursory 

glance at the spectra reveals a doublet at 276(m) and 256(ms) 

in the iodide which is mirrored in the chloride and bromide 

spectra by doublets at 281(s), 260(w) cm'^ and 278(m), 261(m) 

cm"l, respectively. These are assigned as the two expected 

metal sulfur stretching bands. For ZrCl4(dth)2 the two Zr-S 

bands like the two expected Zr-Cl bands seem to have merged 

into one band at 275(ms) cm"^. Due to the possible presence 

of ligand skeletal bands in the remainder of the spectrum it 

is not possible to effectively assign the remainder of the 

bands. Even the assignment of the lower energy metal sulfur 

band is tentative since Hayashi notes that several rotational 

isomers of the form YGY should absorb at 257(m) cm"^. Other 

bands due to conformers derived from the gauche (C-C) rota­

tional isomer also introduce complications. The total number 

of bands observed in a given spectrum is also consistent with 

the number predicted since allowing for removal of the degen­

eracy of E, at least nine and as many as fourteen infrared 

active bands could appear. 

Table 20 also lists the bands observed in the spectirum of 
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a substance obtained via direct reaction of NbCl4(dth)2 with 

excess NbCl^ and benzene as the reaction medium. The reaction 

proceeded readily as indicated by rapid development of a red 

solid, however, extraction of the product with benzene pro­

ceeded extremely slowly over several days. At the end of this 

period the product was dried in vacuo and analyzed for niobium. 

This result was based on a single analysis of a small sample 

Anal: Calcd. for NbCl4(CH3SCH2-)2- Nb, 26.1: Found: 

Nb, 23.9. 

(<0.1 g.) and was for that reason expected to be low. In the 

far infrared spectrum the development of bands attributable to 

If (Nb-Cl) at ca. 340-360 cm"^ was indicative of six-coordinate 

niobium. 

In concluding, it is clear that a dodecahedral 02^ ligand 

environment is consistent with far infrared spectra. Coordin­

ation of both molecules of 2,5-dithiahexane and the absence 

of free ligand are indicated by studies in the infrared. 

Clark and Errington's (37) conclusion that 2,5-dithiahexane 

would not form eight coordinate complexes with TiCl^, SnCl^, 

TiBr^, or VCI4 and the isolation here of such complexes of 

second row transition elements may indicate the relevance of 

the atomic radius of the central metal. 
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Magnetic susceptibilities 

The magnetic susceptibilities of NbX4(dth)2 obeyed the 

Curie law as indicated by plots of vs T~^ shown in Fig. 23. 

Table 21 lists the values of Xtip and ix which were determined 

from the Curie plots. As expected XTIP is much smaller for 

these highly distorted complexes than was found for the six 

coordinate NbX/^L2 (X = CI, Br, and I; L = 8(0112)4) complexes. 

The magnitude of Xtip also increases in the order CI < Br < I 

in contrast to the order Br ~ CI > I for the six-coordinate 

complexes. Considering the differences in the ligand environ­

ment of niobium(IV) for these cases, analogies are not expec­

ted to be fruitful. Consistent with the greater distortion 

the values of n for the chloride and bromide are only slightly 

(7%) less than the spin-only value for one unpaired electron. 

Table 21. Magnetic data from Curie plots 

Compound X^xlO^ XtipxIO^ H 
(emu/mole) (emu/mole) (B.M.) 

NbCl4((CH3SCH2-)2)2 

NbBr4((CH3SCH2-)2)2 

Nbl4((CH3SCH2-)2)2 

-298 

-338 

-402 

+58 

+98 

+162 

1.595 

1.609 

1.283 
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^ NbCl4(CH3SCH2-)2 

400C- 0 NbBr4(CH3SCH2-)2 

e Nbl4(CH3SCH2-)2 

lOOC. 

12 14 4 6 10 8 

l/TxlO^(OK)-l 

23a. Magnetic susceptibility versus (T"^) plot for 
tetrahalobis(2,5-dithiahexane)niobium(IV) 
complexes 
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The orbital contribution to the moment has been considerably 

reduced. The moments are somewhat lower than the effective 

moments 1.7, 1.9, and 1.6 B.M. reported for NbX4(diarsine)2 

(X = CI, Br, and I) (29). Values of (R.T.) for corres­

ponding 2,5-dithiahexane complexes (Table 22) are 1.63, 1.68, 

and 1.41 B.M. Problems of decomposition plagued the magnetic 

susceptibility measurements of Clark et a^. (29), and the 

values of pigff which were reported are corrected for effects 

due to ferromagnetic decomposition products. The dithia-

hexane complexes, the most stable of all those studied, 

exhibited no weight loss during measurements and if left in 

air were only slowly attacked. The variation with halide of 

^eff both sets of complexes is Br > CI > I. 

The esr spectrum of NbCl4(dth)2 was recorded at -196°. 

Figure 23 gives this spectrum of the powder. Only a very 

slight anisotropy was detected. The gyromagnetic ratios of 

NbCl4(dth)2, g|| = 1.985 and ,gj^ - 1.804 were derived by trial 

and error from the curve. These yield an average g-value of 

1.864 from which a magnetic moment, ji., of 1.66 B.M. is calcu­

lated using Equation 12. This was only slightly higher than 

the experimental moment of 1.60 B.M. for NbCl4(dth)2. 
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100 gauss 

DPPH 

Fig. 23b.. Esr spectrum of powdered NbCl4(dth)2 at -196° 
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Table 22. Magnetic susceptibilities and effective magnetic 
moments for tetrahalo(2,5-dithiahexane)niobivim 
(IV) 

T XMXIOG (%M-XD)xlO^ Peff. 
(OK) (emu/mole) 1 (emu/mole) (B.M.) 

NbCl4(DTH)2 

297 826 1124 1.63 
161 1745 2040 1.62 
150 1873 2171 1.61 
140 2030 2328 1.61 
131 2206 2504 1.62 
118 2457 2755 1.61 
113 2631 2929 1.63 
77 3828 4126 1.59 

NbBr4(DTH)2 

297 855 1193 1.68 
202 1374 1712 1.66 
192 1457 1795 1.66 
183 1537 1875 1.66 
176 1601 1939 1.65 
150 1917 2255 1.64 
140 2046 2384 1.63 
77 3936 4272 1.62 

Nbl4(DTH)2 

298 437 839 1.41 
200 774 1176 1.37 
178 914 1316 1.37 
151 1109 1511 1.35 
132 1290 1692 1.34 
77 2411 2813 1.32 
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Electronic spectra 

Due to the virtual insolubility of these compounds in 

most solvents with which they did not react, only the spectra 

of the solids were investigated. These were obtained using 

techniques described in the Experimental section. Table 23 

and Fig, 24 give the results of those studies. Each of the 

Table 23. Solid state electronic spectra of tetrahalobis(2,5-
dithiahexane)niobium(IV) complexes 

Compound (cm"l) 

NbCl4((CH3SCH2-)2)2 12,300, 14,000, 18,800, 24,400, 31,000 
(15,300(w))*(10,700) (13,800) (17,300) 
(22,700) 

NbBr4((CH3SCH2-)2)2 11,600, 13,700, 16,900, 22,700, 28,600 
(10,600) (13,800) (16,700) (21,200) 

Nbl4((CH3SCH2)2)2 10,090, 12,700, 15,200, 18,400, 26,300 
(10,250) (13,100) (15,200) 19,700 

*Values in ( ) are diffuse reflectance data for corres 
ponding diphenylbisdimethylarsine complexes. Taken from 
ref. 29. 

spectra consisted of a group of five bands. Frequencies of 

these decreased in the order CI > Br > I. From these spectra 

it was concluded that the ligand environment of niobium(IV) in 

each was the same, thus confirming the conclusion presented 

earlier and based on far infrared data. With the exception of 
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Fig. 24. Diffuse reflectance spectra of NbX4(dth)2 (X = CI, Br, and I) 
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the band observed at 15,300 cm"^ as a weak shoulder for NbCl^ 

(diars)2 there is a fair correspondence between reported dif­

fuse reflectance spectra for NbX4(diarsine)2 (30) and NbX^ 

(dth)2. The data for the former are reproduced in the table. 

Thus, a dodecahedral ligand environment for these dithiahexane 

complexes is suggested. 

If the solid state spectra of NbX^fdthJg; are compared 

with solution spectra of the six coordinate NbX4(S(0112)4)2 

complexes it is not unreasonable to expect the three lowest 

energy bands in each to arise from transitions between the 

four levels which result from the splitting of the d-manifold 

under the influence of a dodecahedral field. From group 

theory these levels in order according to Ibers and Swalin 

(85) are Bi(dx2-y2), Al(d322_p2), , and B2(d^y). 

The three expected transitions are then ^E, 

and Assignments are given in Table 24. 

Table 24. Tentative assignments of ligand field bands in 
spectra of tetrahalobis(2,5-dithiahexane)niobium 
(IV) complexes ( in cm"l) 

Assignment NbCl4(dth)2 NbBr4(dth)2 Nbl4(dth)2 

•Bl - ̂ Ai 12,300 11,600 10,090 

Bl - 2E 14,000 13,700 12,700 

Bl - 2B2 18,800 16,900 15,200 
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Data from the magnetic studies can now be used in con­

junction with spectra assignments to determine the applicabil­

ity of an ionic model to the present system. It has been 

shown that although formally the dodecahedral model has D2d 

symmetry, it can be considered as arising from distortion of 

a cube. With a metal atom at the center the net effect can 

be considered as a tetragonal distortion. For a ground state 

d^2-y2 gyromagnetic ratios are given by Equations 13 (85) . 

h ' ®n = 2(1 - jTÏ (13) 

where X = free ion spin-orbit coupling constant 

^ 2 = (^B2g - ^Blg) 

A3 = (2Eg - hig) 

Taking the spin orbit coupling constant for Nb^"*" as 748 cm"^ 

the values gj^ = 1.68 and g^^ - 1.88 are calculated. These 

values are much lower than the experimental quantities and 

this indicates the inadequacy of the ionic model. It is pos­

sible to assess the amount of covalent bonding, qualitatively, 

via Equations 14 (85). 

g = 2(1 - g„ = 2(1 - (14) 
J. 6 2 II ^3 

The parameters 3^, and are associated with the Bi, E, 
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and B2 molecular orbitals, respectively, formed by linear com­

binations of metal and ligand orbitals of appropriate symmetry. 

The coefficient of this combination for the molecular orbital 

of Bx symmetry is (1-e^)2, and analogous relations apply for 

E and B2 molecular orbitals. For each of the three parameters 

the range of possible values is 1.0 (ionic bond) to 0.50 

(covalent bond). Agreement with experiment in the present 

instance is found for = 0.65 and _ 0.I6. The value 

0.16 for #2^2 smaller than expected since for pure covalent 

9 9 
bonding in the ground and excited states * P = 0.25. Thus it 

appears that niobium d orbitals are very strongly mixed with 

ligand orbitals in the formation of the complex. 
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SUMMARY 

By direct reaction of anhydrous niobium tetrahalides with 

a large excess of tetrahydrothiophene or dimethyl sulfide the 

complexes NbX^(R2S)2 (X = CI, Br, and I; R2S = dimethyl sul­

fide and tetrahydrothiophene) were isolated. Magnetic suscep­

tibility measurements from -196° to 300° established the 

paramagnetism of the complexes. Magnetic moments calculated 

from the slopes of Curie plots decreased in the order Br > CI 

> I for tetrahydrothiophene and Br > I for dimethyl sulfide 

complexes. Electron spin resonance spectra gave g-values for 

NbCl^(S (0112)4)2 and NbBr^CS (€113)2)2 from which moments were 

calculated which were somewhat higher than moments from bulk 

magnetic susceptibility measurements. Generally, the moments 

were considerably lower than spin-only values for one unpaired 

electron indicating that complete quenching of the orbital con­

tribution to the moment by the ligand field had not occurred. 

2 
Using the Figgis treatment splitting of the "^2% ground state 

by the axial component in the ligand field was found to be ça. 

1000 cm~^ for all the complexes except Nbl4(S (€112)4) 2 where a 

much smaller splitting was observed. A low magnetic moment 

for Nbl4(S (0112)4)2 was consistent with the presence of some 

diamagnetic impurity. From electronic spectra estimates of 
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A for alkyl sulfide complexes placed these ligands between 

CI" and Br" in the spectrochemical series for niobium(IV). 

Far infrared spectra of the complexes were consistent with a 

cis-configuration and some bands were assigned to normal 

vibrational modes. 

A complex ZrCl^(S(€112)4)2 was prepared and its far infra­

red spectrum recorded. The number of observed metal ligand 

vibrational frequencies was consistent with a trans rather 

than a cis stereochemistry and some of the observed bands were 

assigned on this basis. 

Recrystallization of NbX^(S(^3)2)2 from benzene gave the 

complexes NbX^ (8(0112)2) (^ = CI and Br) which were diamagnetic 

solids. From the direct reaction of diethyl sulfide and NbX^. 

only the diamagnetic monoadducts NbX^(S(CH2CH3)2) could be 

isolated. Far infrared spectra of solid dimethyl and diethyl 

sulfide complexes of the chloride as well as the bromide 

exhibited a virtual one-to-one correspondence consistent with 

the same ligand environment being present in each. Solid 

state and solution spectra of NbX^L resembled spectra of 

NbX^L2 (L = monodentate sulfur donor ligand). A direct metal-

metal bond in a bioctahedral halogen bridged dimer was proposed 

to account for the observed diamagnetism. Relative stability 
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of bis-adducts in a dynamic vacuum was I > Br » CI and 

5(05^)4 > 5(0113)2 » 3(01120113)2 indicating the influence of 

electronic as well as steric effects. Thus, structural 

studies of anhydrous NbX^ indicate the following order of 

increasing strength of the metal-metal bond: I < 01. The 

greater strength of the metal-metal bond in NbOl^ is expected 

to stabilize a discrete metal-metal bonded dimer. Steric 

crowding of the ligands increases in the order 8(0112)4 < 

3(0113)2 < 3(01120113)2, and discrete solid bis-complexes of 

diethyl sulfide were not encountered in these studies. A 

molecular weight determination of NbBr4(S(CH3)2) in benzene 

indicated considerable dissociation of any dimeric species 

into monomers. Spectra of chloride and bromide complexes in 

benzene exhibited near infrared bands at 8,300 and 6,900 cm 

respectively, not far from positions predicted by current 

theory for a trigonal bipyramidal complex. 

With 2,5-dithiahexane (dth) evidence for the complexes 

MX4(dth)2 (M = Nb; X = 01, Br, and I: M = Zr; X = 01) was 

obtained. Magnetic moments of the niobium complexes determined 

from Ourie plots were only slightly lower than spin-only for 

the chloride and bromide indicating considerable quenching of 

any orbital contribution to the moment by the low symmetry 
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ligand field. An esr spectrum of NbCl4(dth)2 at -196° exhib­

ited anisotropy from which g||^ , gj^ and therefore g(ave) were 

derived. The moment calculated using g(ave) was in reasonable 

agreement with the bulk magnetic susceptibility result. Com­

parison of solid spectra of NbX^(dth)2 with those of corres­

ponding NbX4(diarsine)2 complexes (known to have a dodecahed-

ral ligand environment) indicated a similar ligand environment 

in each case. A dodecahedral ligand field formed by coordina­

tion of four halides and four sulfur atoms about Nb(IV) was 

proposed. Far infrared data were consistent with such a 

ligand field, and the expected two Nb-X and Nb-S stretching 

bands were identified in the spectra. Bands in the visible 

spectra were assigned as transitions between essentially pure 

d-orbitals in a D2d-dodecahedral ligand field. From an inter­

pretation of the electronic spectrum and g-values of NbCl^ 
V 

(dth)2 considerable mixing of metal and ligand orbitals was 

proposed. 

Far infrared data confirm the prediction of Clark that 

U(M-X) is sensitive to coordination number of the metal since 

f(Nb-X) decreased by ça. 40-50 cm"^ on passing from six coor­

dinate to eight-coordinate complexes. Comparison of far 

infrared spectra of NbX^L and NbX4L2 (solid and solution) 



www.manaraa.com

130 

suggests that a change of coordination number from six to five 

has a small to negligible effect upon the highest observed 

Nb-X stretching frequency. 
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SUGGESTIONS FOR FURTHER WORK 

While only cis isomers were encountered with niobium(IV) 

clearly small amounts of a trans isomer would have gone un­

detected. These studies should be extended to other solvents 

where trans isomers may have an enhanced stability. 

Magnetic susceptibility data is not so useful in these 

systems as epr and electronic spectra. Such studies should 

be extended to single crystals as structure data becomes avail­

able. The relevance of current theories of bonding in these 

d^ complexes could then be clearly assessed. 

The dissociation of discrete paramagnetic bis-complexes 

in vacuo to yield stable diamagnetic solids should be investi­

gated further. Crystals of these monoadducts can be obtained 

from hot benzene and used in structure determinations. Addi­

tional insight into the nature of the niobium-niobium bond 

would be the direct result. 

Structure data could also provide the basis for a normal 

coordinate analysis of vibrational spectra of solid monoadducts 

of niobium(IV). The similarity of spectra of both solid bis-

adduct and solid mono-adduct complexes of niobium(IV) suggests 

that metal-halogen (bridging) stretching modes have force 

constants not very different from the lowest energy terminal 
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Nb-X stretching force constant in discrete cis-NbX^L2 com­

plexes . 

In benzene and cyclohexane evidence for discrete, and 

very likely paramagnetic five coordinate complexes of niobium 

(IV) should be sought using the techniques of nmr spectroscopy. 

Structure data will ultimately be required to confirm 

eight coordination for niobium(IV) in NbX4((CH3SCH2-)2)2 and 

would also provide a basis for esr study of single crystals as 

well as normal coordinate analysis of vibrational spectra of 

these complexes. In conjunction with a similar study for a 

six coordinate niobium(IV) complex the variation of the force 

constant for Nb-X stretching modes with increase in coordina­

tion number could be ascertained. 

Extension of these studies to other metals should also be 

fruitful. Thus an MoX^(^2^) complex may or may not be diamag-

1 9 
netic. Extension to third row transition elements (d or d ) 

will be fruitful where starting materials are available which 

are more reactive than the anhydrous halides themselves. 
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